Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses

Abstract

Increasing evidence implicates the tumor microbiota as a factor that can influence cancer progression. In patients with colorectal cancer (CRC), we found that pre-resection antibiotics targeting anaerobic bacteria substantially improved disease-free survival by 25.5%. For mouse studies, we designed an antibiotic silver-tinidazole complex encapsulated in liposomes (LipoAgTNZ) to eliminate tumor-associated bacteria in the primary tumor and liver metastases without causing gut microbiome dysbiosis. Mouse CRC models colonized by tumor-promoting bacteria (Fusobacterium nucleatum spp.) or probiotics (Escherichia coli Nissle spp.) responded to LipoAgTNZ therapy, which enabled more than 70% long-term survival in two F. nucleatum-infected CRC models. The antibiotic treatment generated microbial neoantigens that elicited anti-tumor CD8+ T cells. Heterologous and homologous bacterial epitopes contributed to the immunogenicity, priming T cells to recognize both infected and uninfected tumors. Our strategy targets tumor-associated bacteria to elicit anti-tumoral immunity, paving the way for microbiome–immunotherapy interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The class of antibiotics targeting anaerobic bacteria have protective effect on patients with CRC.
Fig. 2: F. nucleatum invaded CT26FL3(Luc/RFP) tumor cells in response to hypoxia.
Fig. 3: Characterization of the pH-sensitive antibiotic liposomes.
Fig. 4: Removing F. nucleatum in the tumor by liposomal antibiotics AgTNZ eradicated CRC.
Fig. 5: T cells from survivors suppressed the growth of both infected and uninfected tumors.
Fig. 6: The killing of tumor-associated bacteria promoted immune recognition of bacterial neoepitopes.

Similar content being viewed by others

Data availability

The 16S rRNA data are available through the National Center for Biotechnology Information (NCBI) Sequence Read Archive (accession numbers SRR23197060SRR23197067, BioProject PRJNA926798). The whole-exome sequencing data are available through the Sequence Read Archive (BioProject PRJNA926643). The genome of Fusobacterium nucleatum subsp. nucleatum ATCC 25586 (GCA_000007325.1) is available on KEGG (https://www.genome.jp/kegg-bin/show_organism?org=fnu). Mus musculus genome (GRCm39 reference annotation release 109) is available at the NCBI (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Mus_musculus/109/). Fusobacterium nucleatum reference proteome (UP000002521_190304) is available at the European Bioinformatics Institute (https://www.ebi.ac.uk/reference_proteomes/). All other data supporting the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The distance map for FISH images analysis is available on Zenodo (https://doi.org/10.5281/zenodo.8200515)78.

References

  1. Bodinier, M. et al. Efficient detection and immunomagnetic sorting of specific T cells using multimers of MHC class I and peptide with reduced CD8 binding. Nat. Med. 6, 707–710 (2000).

    CAS  PubMed  Google Scholar 

  2. Alard, E. et al. Advances in anti-cancer immunotherapy: CAR-T cell, checkpoint inhibitors, dendritic cell vaccines, and oncolytic viruses, and emerging cellular and molecular targets. Cancers (Basel) 12, 1826 (2020).

    CAS  PubMed  Google Scholar 

  3. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    CAS  PubMed  Google Scholar 

  6. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng, D.-W. et al. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat. Biomed. Eng. 3, 717–728 (2019).

    CAS  PubMed  Google Scholar 

  9. Goodman, A. L. & Gordon, J. I. Our unindicted coconspirators: human metabolism from a microbial perspective. Cell Metab. 12, 111–116 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Derosa, L. et al. Microbiota-centered interventions: the next breakthrough in immuno-oncology? Cancer Discov. 11, 2396–2412 (2021).

    CAS  PubMed  Google Scholar 

  13. Song, M., Chan, A. T. & Sun, J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology 158, 322–340 (2020).

    CAS  PubMed  Google Scholar 

  14. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 579, 567–574 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rousseau, B. et al. Impact of antibiotics (ATB) on the recurrence of resected colorectal cancer (CRC): results of EVADER-1 a nation-wide pharmacoepidemiologic study. J. Clin. Oncol. 38, 4106 (2020).

    Google Scholar 

  16. Sargent, D. J. et al. A pooled analysis of adjuvant chemotherapy for resected colon cancer in elderly patients. N. Engl. J. Med. 345, 1091–1097 (2001).

    CAS  PubMed  Google Scholar 

  17. Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, Z., Chen, J., Yao, H. & Hu, H. Fusobacterium and colorectal cancer. Front. Oncol. 8, 371 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–166 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun, Y. et al. Adaptive-guided-coupling-probability level set for retinal layer segmentation. IEEE J. Biomed. Health Inform. 24, 3236–3247 (2020).

    PubMed  Google Scholar 

  22. Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).

    CAS  PubMed  Google Scholar 

  23. Wilson, M. R. et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363, eaar7785 (2019).

  24. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–8062 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahn, J. et al. Human gut microbiome and risk for colorectal cancer. J. Natl Cancer Inst. 105, 1907–1911 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pinato, D. J. et al. Association of prior antibiotic treatment with survival and response to immune checkpoint inhibitor therapy in patients with cancer. JAMA Oncol. 5, 1774–1778 (2019).

    PubMed  PubMed Central  Google Scholar 

  27. Arane, K. & Goldman, R. D. Fusobacterium infections in children. Can. Fam. Physician 62, 813–814 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Leitsch, D. et al. Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. J. Antimicrob. Chemother. 66, 1756–1765 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Upcroft, P. & Upcroft, J. A. Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin. Microbiol. Rev. 14, 150–164 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dingsdag, S. A. & Hunter, N. Metronidazole: an update on metabolism, structure–cytotoxicity and resistance mechanisms. J. Antimicrob. Chemother. 73, 265–279 (2018).

    CAS  PubMed  Google Scholar 

  31. Qiu, K., Durham, P. G. & Anselmo, A. C. Inorganic nanoparticles and the microbiome. Nano Res. 11, 4936–4954 (2018).

    CAS  Google Scholar 

  32. Kim, D. et al. Selective killing of pathogenic bacteria by antimicrobial silver nanoparticle–cell wall binding domain conjugates. ACS Appl. Mater. Interfaces 10, 13317–13324 (2018).

    CAS  PubMed  Google Scholar 

  33. Prabhu, S. & Poulose, E. K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 32 (2012).

    Google Scholar 

  34. Waszczykowska, A., Żyro, D., Ochocki, J. & Jurowski, P. Clinical application and efficacy of silver drug in ophthalmology: a literature review and new formulation of EYE drops with drug silver (I) complex of metronidazole with improved dosage form. Biomedicines 9, 210 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Starek, M., Dąbrowska, M., Chebda, J., Żyro, D. & Ochocki, J. Stability of metronidazole and its complexes with silver(I) salts under various stress conditions. Molecules 26, 3582 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Radko, L., Stypuła-Trębas, S., Posyniak, A., Żyro, D. & Ochocki, J. Silver(I) complexes of the pharmaceutical agents metronidazole and 4-hydroxymethylpyridine: comparison of cytotoxic profile for potential clinical application. Molecules (Basel) 24, 1949 (2019).

    CAS  Google Scholar 

  37. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  38. Yu, J. et al. Remote loading paclitaxel–doxorubicin prodrug into liposomes for cancer combination therapy. Acta Pharm. Sin. B 10, 1730–1740 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo, G., Guo, T. & Chang, X. Effect of CYP3A4 genetic polymorphisms on pharmacokinetics of tinidazole. Journal of Chinese Pharmaceutical Sciences 29, 272–279 (2020).

    Google Scholar 

  40. Sivanesan, S. et al. Pharmacokinetics of the individual major components of polymyxin B and colistin in rats. J. Nat. Prod. 80, 225–229 (2017).

    CAS  PubMed  Google Scholar 

  41. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Geng, F., Zhang, Y., Lu, Z., Zhang, S. & Pan, Y. Fusobacterium nucleatum caused DNA damage and promoted cell proliferation by the Ku70/p53 pathway in oral cancer cells. DNA Cell Biol. 39, 144–151 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, S. et al. Fusobacterium nucleatum promotes epithelial-mesenchymal transiton through regulation of the lncRNA MIR4435-2HG/miR-296-5p/Akt2/SNAI1 signaling pathway. FEBS J. 287, 4032–4047 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Park, E. M. et al. Targeting the gut and tumor microbiota in cancer. Nat. Med. 28, 690–703 (2022).

    CAS  PubMed  Google Scholar 

  45. Smith, M. et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat. Med. 28, 713–723 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lobionda, S., Sittipo, P., Kwon, H. Y. & Lee, Y. K. The role of gut microbiota in intestinal inflammation with respect to diet and extrinsic stressors. Microorganisms 7, 271 (2019).

  47. Nie, K. et al. Roseburia intestinalis: a beneficial gut organism from the discoveries in genus and species. Front. Cell. Infect. Microbiol. 11, 757718 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Okano, K., Shimoda, T. & Matsumura, Y. Clinicopathologic and immunohistochemical study of early colorectal cancer with liver metastases. J. Gastroenterol. 34, 334–340 (1999).

    CAS  PubMed  Google Scholar 

  49. Goodwin, T. J., Zhou, Y., Musetti, S. N., Liu, R. & Huang, L. Local and transient gene expression primes the liver to resist cancer metastasis. Sci. Transl. Med. 8, 364ra153 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Han, Y. K. et al. Hypoxia induces immunogenic cell death of cancer cells by enhancing the exposure of cell surface calreticulin in an endoplasmic reticulum stress-dependent manner. Oncol Lett. 18, 6269–6274 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cao, J. et al. Heat shock protein 70 attenuates hypoxiainduced apoptosis of pulmonary microvascular endothelial cells isolated from neonatal rats. Mol. Med. Rep. 24, 690 (2021).

  52. He, Y., Xiang, Z. & Mobley, H. L. Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J. Biomed. Biotechnol. 2010, 297505 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. Ong, E. et al. Vaxign2: the second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Res. 49, W671–W678 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ali Mohammed, M. M., Pettersen, V. K., Nerland, A. H., Wiker, H. G. & Bakken, V. Label-free quantitative proteomic analysis of the oral bacteria Fusobacterium nucleatum and Porphyromonas gingivalis to identify protein features relevant in biofilm formation. Anaerobe 72, 102449 (2021).

    CAS  PubMed  Google Scholar 

  55. Mohammed, M. M. A., Pettersen, V. K., Nerland, A. H., Wiker, H. G. & Bakken, V. Quantitative proteomic analysis of extracellular matrix extracted from mono- and dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. Anaerobe 44, 133–142 (2017).

    CAS  PubMed  Google Scholar 

  56. Cameron, M. & Williams, H. E. Comparing compressed sequences for faster nucleotide BLAST searches. IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 349–364 (2007).

    CAS  PubMed  Google Scholar 

  57. Stevens, J., Wiesmüller, K.-H., Walden, P. & Joly, E. Peptide length preferences for rat and mouse MHC class I molecules using random peptide libraries. Eur. J. Immunol. 28, 1272–1279 (1998).

    CAS  PubMed  Google Scholar 

  58. Gil-Cruz, C. et al. Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science 366, 881–886 (2019).

    CAS  PubMed  Google Scholar 

  59. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    CAS  PubMed  Google Scholar 

  60. LeBlanc, D. J., Lee, L. N. & Abu-Al-Jaibat, A. Molecular, genetic, and functional analysis of the basic replicon of pVA380-1, a plasmid of oral streptococcal origin. Plasmid 28, 130–145 (1992).

    CAS  PubMed  Google Scholar 

  61. Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021).

    CAS  PubMed  Google Scholar 

  63. Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Munoz-Price, L. S., Frencken, J. F., Tarima, S. & Bonten, M. Handling time-dependent variables: antibiotics and antibiotic resistance. Clin. Infect. Dis. 62, 1558–1563 (2016).

    PubMed  Google Scholar 

  65. Song, W. et al. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv. Mater. 30, e1805007 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Song, W. et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 9, 2237 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Hu, M. et al. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nat. Commun. 10, 2993 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. Gmur, R., Wyss, C., Xue, Y., Thurnheer, T. & Guggenheim, B. Gingival crevice microbiota from Chinese patients with gingivitis or necrotizing ulcerative gingivitis. Eur. J. Oral Sci. 112, 33–41 (2004).

    PubMed  Google Scholar 

  69. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    CAS  PubMed  Google Scholar 

  70. Mohsen, A., Park, J., Chen, Y. A., Kawashima, H. & Mizuguchi, K. Impact of quality trimming on the efficiency of reads joining and diversity analysis of Illumina paired-end reads in the context of QIIME1 and QIIME2 microbiome analysis frameworks. BMC Bioinformatics 20, 581 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  PubMed  Google Scholar 

  75. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed  PubMed Central  Google Scholar 

  77. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    PubMed  PubMed Central  Google Scholar 

  78. Sun, Y. et al. Killing tumor-associated bacteria with a liposomal antibiotic generates microbial neoantigens that induce anti-tumor immune responses. (2023). https://zenodo.org/record/8200515

Download references

Acknowledgements

K.-H.L. passed away before the submission of the manuscript. The paper is dedicated in memory of him. We thank the University of North Carolina’s Department of Chemistry Mass Spectrometry Core Laboratory, especially E. D. Weatherspoon, for assistance with mass spectrometry analysis. We thank the University of North Carolina’s Department of Microscopy Services Laboratory, especially V. J. Madden, for assistance with TEM imaging. We thank the University of North Carolina’s Animal Histopathology and Laboratory Medicine Core, especially L. Wang, for assistance with histology and toxicity analysis. We thank the University of North Carolina’s Cryo-EM Core, especially J. Peck, for assistance with cryo-EM imaging. We thank the University of North Carolina’s Nanomedicines Characterization Core Facility, especially M. Sokolsky, for assistance with ICP‒MS analysis. We thank the University of North Carolina’s Microbiome Core Facility for 16S rRNA gene sequencing, the Cancer Center Support Grant (P30 CA016086) and the Center for Gastrointestinal Biology and Disease (P30 DK34987). Figures 2a, 3a, 4a, 4o and 5d and Supplementary Figs. 4a, 6b, 10h and 12a were created with BioRender. The work was supported by NIH grant CA198999 (to L.H. and A.A.), the Fred Eshelman Distinguished Professorship (to L.H.), the Institut National du Cancer (InCa), the Nuovo-Soldati Foundation, Swim Across America and, in part, through NIH/NCI Cancer Center Support Grant P30 CA008748 (to B.R., M.B.F. and O.A.). M.B.F. is funded by NIH T32‐CA009512 and an ASCO Young Investigator Award.

Author information

Authors and Affiliations

Authors

Contributions

L.H., A.A. and M.W. conceived and designed the research. L.H., M.W., K.Q., A.V., A.A., W.S., J.G., J.A., J.N. and J.P.-Y.T. designed the experiments and analyzed the data. B.R., C.L.B.-B., I.K., P.-J.B., M.H., M.F., E.D., A.H. and F.R. generated the database and did methodology, statistical analyses, models and figures for clinical data. O.A. analyzed the whole-genome sequencing data. K.Q. established the culture and plating system for F. nucleatum and modeled the growth curve versus turbidity. G.H. did sample preparation and data analysis for 16S rRNA sequencing. H.S. aligned epitopes from bacteria proteome. Y.H. ran the topology analysis for bacteria genome. Y.-Y.C., K.-H.L. and M.W profiled the pharmacokinetics of the drugs. Y.Z., Y.L. and M.W. sampled the tissues and serum for pharmacokinetic and toxicity assays. M.M. did deconvolution and reconstruction of the images. Y.S. coded for the FISH quantification. J.G., X.Z., Y.Z. and M.W. performed the surgery and in vivo mouse experiments. X.Z. and M.W. did flow cytometry analysis. L.L., P.A. and M.W. purified and analyzed T cell epitopes. M.W. and Y.Z. prepared the frozen sections and immunofluorescence, FISH staining and qPCR assays. M.W., B.R. and L.H. wrote the manuscript.

Corresponding author

Correspondence to Leaf Huang.

Ethics declarations

Competing interests

L. Huang: Consultant with PDS Biotechnology and Stemirna Therapeutics. B. Rousseau: Advisory/Consultancy, Speaker Bureau/Expert testimony: Bayer; Advisory/Consultancy, Speaker Bureau/Expert testimony: Roche; Travel/Accommodation/Expenses: Servier; Travel/Accommodation/Expenses: Astellas; Speaker Bureau/Expert testimony: Gilead.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–16 and Supplementary Tables 1–3

Reporting Summary

Supplementary Video

Reconstruction of image of F. nucleatum-infected CT26FL3(Luc/RFP) cells

Supplementary Data

Source Data Supplementary Figs. 4 and 6–14

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 5

Unprocessed western blots

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Rousseau, B., Qiu, K. et al. Killing tumor-associated bacteria with a liposomal antibiotic generates neoantigens that induce anti-tumor immune responses. Nat Biotechnol (2023). https://doi.org/10.1038/s41587-023-01957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-023-01957-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer