Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2

Abstract

Supersolid, an exotic quantum state of matter that consists of particles forming an incompressible solid structure while simultaneously showing superfluidity of zero viscosity1, is one of the long-standing pursuits in fundamental research2,3. Although the initial report of 4He supersolid turned out to be an artefact4, this intriguing quantum matter has inspired enthusiastic investigations into ultracold quantum gases5,6,7,8. Nevertheless, the realization of supersolidity in condensed matter remains elusive. Here we find evidence for a quantum magnetic analogue of supersolid—the spin supersolid—in the recently synthesized triangular-lattice antiferromagnet Na2BaCo(PO4)2 (ref. 9). Notably, a giant magnetocaloric effect related to the spin supersolidity is observed in the demagnetization cooling process, manifesting itself as two prominent valley-like regimes, with the lowest temperature attaining below 100 mK. Not only is there an experimentally determined series of critical fields but the demagnetization cooling profile also shows excellent agreement with the theoretical simulations with an easy-axis Heisenberg model. Neutron diffractions also successfully locate the proposed spin supersolid phases by revealing the coexistence of three-sublattice spin solid order and interlayer incommensurability indicative of the spin superfluidity. Thus, our results reveal a strong entropic effect of the spin supersolid phase in a frustrated quantum magnet and open up a viable and promising avenue for applications in sub-kelvin refrigeration, especially in the context of persistent concerns about helium shortages10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of spin supersolid cooling, spin-boson mapping and the U(1) phase fluctuations.
Fig. 2: Quasi-adiabatic demagnetization cooling and low-temperature heat capacity of NBCP.
Fig. 3: Low-temperature MCE, field-induced quantum phase transitions and the field-temperature phase diagram.
Fig. 4: Low-temperature neutron diffraction.

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding authors on reasonable request. Source data are provided with this paper.

Code availability

The code that supports the findings of this study is available from the corresponding authors upon reasonable request.

References

  1. Leggett, A. J. Can a solid be ‘superfluid’? Phys. Rev. Lett. 25, 1543–1546 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Kim, E. & Chan, M. H. W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Boninsegni, M. & Prokof’ev, N. V. Colloquium: Supersolids: what and where are they? Rev. Mod. Phys. 84, 759–776 (2012).

    Article  ADS  CAS  Google Scholar 

  4. Kim, D. Y. & Chan, M. H. W. Absence of supersolidity in solid helium in porous vycor glass. Phys. Rev. Lett. 109, 155301 (2012).

    Article  ADS  PubMed  Google Scholar 

  5. Li, J.-R. et al. A stripe phase with supersolid properties in spin-orbit-coupled Bose-Einstein condensates. Nature 543, 91–94 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Article  ADS  PubMed  Google Scholar 

  7. Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zhong, R., Guo, S., Xu, G., Xu, Z. & Cava, R. J. Strong quantum fluctuations in a quantum spin liquid candidate with a Co-based triangular lattice. Proc. Natl Acad. Sci. USA 116, 14505–14510 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cho, A. Helium-3 shortage could put freeze on low-temperature research. Science 326, 778–779 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Kramer, D. Helium users are at the mercy of suppliers. Phys. Today 72, 26–29 (2019).

    ADS  Google Scholar 

  12. Melko, R. G. et al. Supersolid order from disorder: hard-core Bosons on the triangular lattice. Phys. Rev. Lett. 95, 127207 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wessel, S. & Troyer, M. Supersolid hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127205 (2005).

    Article  ADS  PubMed  Google Scholar 

  14. Heidarian, D. & Damle, K. Persistent supersolid phase of hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127206 (2005).

    Article  ADS  PubMed  Google Scholar 

  15. Boninsegni, M. & Prokof’ev, N. Supersolid phase of hard-core bosons on a triangular lattice. Phys. Rev. Lett. 95, 237204 (2005).

    Article  ADS  PubMed  Google Scholar 

  16. Heidarian, D. & Paramekanti, A. Supersolidity in the triangular lattice spin-1/2 XXZ model: a variational perspective. Phys. Rev. Lett. 104, 015301 (2010).

    Article  ADS  PubMed  Google Scholar 

  17. Yamamoto, D., Marmorini, G. & Danshita, I. Quantum phase diagram of the triangular-lattice XXZ model in a magnetic field. Phys. Rev. Lett. 112, 127203 (2014).

    Article  ADS  PubMed  Google Scholar 

  18. Yamamoto, D., Marmorini, G. & Danshita, I. Microscopic model calculations for the magnetization process of layered triangular-lattice quantum antiferromagnets. Phys. Rev. Lett. 114, 027201 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Sellmann, D., Zhang, X.-F. & Eggert, S. Phase diagram of the antiferromagnetic XXZ model on the triangular lattice. Phys. Rev. B 91, 081104 (2015).

    Article  ADS  Google Scholar 

  20. Matsuda, H. & Tsuneto, T. Off-diagonal long-range order in solids. Prog. Theor. Phys. Suppl. 46, 411–436 (1970).

    Article  ADS  Google Scholar 

  21. Liu, K.-S. & Fisher, M. E. Quantum lattice gas and the existence of a supersolid. J. Low Temp. Phys. 10, 655–683 (1973).

    Article  ADS  CAS  Google Scholar 

  22. Tsurkan, V. et al. Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4. Sci. Adv. 3, e1601982 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Anderson, P. W. Resonating valence bonds: a new kind of insulator?. Mater. Res. Bull. 8, 153–160 (1973).

    Article  CAS  Google Scholar 

  24. Collins, M. F. & Petrenko, O. A. Review/synthèse: triangular antiferromagnets. Can. J. Phys. 75, 605–655 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Starykh, O. A. Unusual ordered phases of highly frustrated magnets: a review. Rep. Prog. Phys. 78, 052502 (2015).

    Article  ADS  PubMed  Google Scholar 

  26. Shirata, Y., Tanaka, H., Matsuo, A. & Kindo, K. Experimental realization of a spin-1/2 triangular-lattice Heisenberg antiferromagnet. Phys. Rev. Lett. 108, 057205 (2012).

    Article  ADS  PubMed  Google Scholar 

  27. Zhou, H. D. et al. Successive phase transitions and extended spin-excitation continuum in the \(S{\boldsymbol{=}}\frac{1}{2}\) triangular-lattice antiferromagnet Ba3CoSb2O9. Phys. Rev. Lett. 109, 267206 (2012).

  28. Li, N. et al. Possible itinerant excitations and quantum spin state transitions in the effective spin-1/2 triangular-lattice antiferromagnet Na2BaCo(PO4)2. Nat. Commun. 11, 4216 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, S. et al. Temporal and field evolution of spin excitations in the disorder-free triangular antiferromagnet Na2BaCo(PO4)2. Phys. Rev. B 103, 024413 (2021).

    Article  ADS  CAS  Google Scholar 

  30. Wellm, C. et al. Frustration enhanced by Kitaev exchange in a \({j}_{{\rm{eff}}}=\frac{1}{2}\) triangular antiferromagnet. Phys. Rev. B 104, L100420 (2021).

  31. Gao, Y. et al. Spin supersolidity in nearly ideal easy-axis triangular quantum antiferromagnet Na2BaCo(PO4)2. npj Quantum Mater. 7, 89 (2022).

    Article  ADS  CAS  Google Scholar 

  32. Weiss, P. & Piccard, A. Le phénomène magnétocalorique. J. Phys. (Paris) 7, 103–109 (1917).

    Google Scholar 

  33. Wolf, B. et al. Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point. Proc. Natl Acad. Sci. USA 108, 6862–6866 (2011).

    Article  ADS  CAS  PubMed Central  Google Scholar 

  34. Zhu, L. J., Garst, M., Rosch, A. & Si, Q. M. Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points. Phys. Rev. Lett. 91, 066404 (2003).

    Article  ADS  PubMed  Google Scholar 

  35. Tokiwa, Y., Radu, T., Geibel, C., Steglich, F. & Gegenwart, P. Divergence of the magnetic Grüneisen ratio at the field-induced quantum critical point in YbRh2Si2. Phys. Rev. Lett. 102, 066401 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Gegenwart, P. Grüneisen parameter studies on heavy fermion quantum criticality. Rep. Prog. Phys. 79, 114502 (2016).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  37. Rost, A. W., Perry, R. S., Mercure, J.-F., Mackenzie, A. P. & Grigera, S. A. Entropy landscape of phase formation associated with quantum criticality in Sr3Ru2O7. Science 325, 1360–1363 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wang, Z. et al. Quantum criticality of an Ising-like spin-1/2 antiferromagnetic chain in a transverse magnetic field. Phys. Rev. Lett. 120, 207205 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Wolf, B. et al. Magnetic cooling close to a quantum phase transition—the case of Er2Ti2O7. J. Appl. Phys. 120, 142112 (2016).

    Article  ADS  Google Scholar 

  40. Shirron, P. J. Applications of the magnetocaloric effect in single-stage, multi-stage and continuous adiabatic demagnetization refrigerators. Cryogenics 62, 130–139 (2014).

    Article  ADS  CAS  Google Scholar 

  41. Jahromi, A. E., Shirron, P. J. & DiPirro, M. J. Sub-Kelvin cooling systems for quantum computers. In Proc. 2019 Cryogenic Engineering Conference and International Cryogenic Materials Conference (CEC/ICMC), GSFC-E-DAA-TN70637 (2019); https://ntrs.nasa.gov/citations/20190027529.

  42. Giauque, W. F. & MacDougall, D. P. Attainment of temperatures below 1 absolute by demagnetization of Gd2(SO4)38H2O. Phys. Rev. 43, 768–768 (1933).

    Article  ADS  CAS  Google Scholar 

  43. Huang, Y. Y. et al. Thermal conductivity of triangular-lattice antiferromagnet Na2BaCo(PO4)2: absence of itinerant fermionic excitations. Preprint at https://arxiv.org/abs/2206.08866 (2022).

  44. Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. classical systems. Sov. Phys. JETP 32, 493 (1971).

    ADS  MathSciNet  Google Scholar 

  45. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C: Solid State Phys. 6, 1181–1203 (1973).

    Article  ADS  CAS  Google Scholar 

  46. Tokiwa, Y. et al. Frustrated magnet for adiabatic demagnetization cooling to milli-kelvin temperatures. Commun. Mater. 2, 42 (2021).

    Article  CAS  Google Scholar 

  47. Shimura, Y. et al. Magnetic refrigeration down to 0.2 K by heavy fermion metal YbCu4Ni. J. Appl. Phys. 131, 013903 (2022).

    Article  ADS  CAS  Google Scholar 

  48. Sengupta, P. & Batista, C. D. Spin supersolid in an anisotropic spin-one Heisenberg chain. Phys. Rev. Lett. 99, 217205 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Schmidt, K. P., Dorier, J., Läuchli, A. M. & Mila, F. Supersolid phase induced by correlated hopping in spin-1/2 frustrated quantum magnets. Phys. Rev. Lett. 100, 090401 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Yu, S., Gao, Y., Chen, B.-B. & Li, W. Learning the effective spin Hamiltonian of a quantum magnet. Chin. Phys. Lett. 38, 097502 (2021).

    Article  ADS  CAS  Google Scholar 

  51. Chen, B.-B., Chen, L., Chen, Z., Li, W. & Weichselbaum, A. Exponential thermal tensor network approach for quantum lattice models. Phys. Rev. X 8, 031082 (2018).

    Google Scholar 

  52. Li, H. et al. Thermal tensor renormalization group simulations of square-lattice quantum spin models. Phys. Rev. B 100, 045110 (2019).

    Article  ADS  CAS  Google Scholar 

  53. Chen, L. et al. Two temperature scales in the triangular lattice Heisenberg antiferromagnet. Phys. Rev. B 99, 140404(R) (2019).

    Article  ADS  Google Scholar 

  54. Chen, B.-B., Liu, Y.-J., Chen, Z. & Li, W. Series-expansion thermal tensor network approach for quantum lattice models. Phys. Rev. B 95, 161104 (2017).

    Article  ADS  Google Scholar 

  55. Dong, Y.-L., Chen, L., Liu, Y.-J. & Li, W. Bilayer linearized tensor renormalization group approach for thermal tensor networks. Phys. Rev. B 95, 144428 (2017).

    Article  ADS  Google Scholar 

  56. Li, Q. et al. Tangent space approach for thermal tensor network simulations of the 2D Hubbard model. Phys. Rev. Lett. 130, 226502 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Pathak, A. K., Paudyal, D., Mudryk, Y., Gschneidner, K. A. & Pecharsky, V. K. Anomalous Schottky specific heat and structural distortion in ferromagnetic PrAl2. Phys. Rev. Lett. 110, 186405 (2013).

    Article  ADS  PubMed  Google Scholar 

  58. Quirion, G. et al. Magnetic phase diagram of Ba3CoSb2O9 as determined by ultrasound velocity measurements. Phys. Rev. B 92, 014414 (2015).

    Article  ADS  Google Scholar 

  59. Ranjith, K. M. et al. Anisotropic field-induced ordering in the triangular-lattice quantum spin liquid NaYbSe2. Phys. Rev. B 100, 224417 (2019).

    Article  ADS  CAS  Google Scholar 

  60. Bachus, S. et al. Field evolution of the spin-liquid candidate YbMgGaO4. Phys. Rev. B 102, 104433 (2020).

    Article  ADS  CAS  Google Scholar 

  61. Li, N. et al. Quantum spin state transitions in the spin-1 equilateral triangular lattice antiferromagnet Na2BaNi(PO4)2. Phys. Rev. B 104, 104403 (2021).

    Article  ADS  CAS  Google Scholar 

  62. Kim, J. et al. Magnetic phase diagram of a 2-dimensional triangular lattice antiferromagnet Na2BaMn(PO4)2. J. Phys. Condens. Matter 34, 475803 (2022).

    Article  CAS  Google Scholar 

  63. Zhang, C. et al. Doping-induced structural transformation in the spin-1/2 triangular-lattice antiferromagnet Na2Ba1−xSrxCo(PO4)2. J. Alloys Compd. 905, 164147 (2022).

    Article  CAS  Google Scholar 

  64. Zhong, R., Guo, S. & Cava, R. J. Frustrated magnetism in the layered triangular lattice materials K2Co(SeO3)2 and Rb2Co(SeO3)2. Phys. Rev. Mater. 4, 084406 (2020).

    Article  CAS  Google Scholar 

  65. Guo, S., Zhong, R., Górnicka, K., Klimczuk, T. & Cava, R. J. Crystal growth, structure, and magnetism of the 2D spin 1/2 triangular lattice material Rb3Yb(PO4)2. Chem. Mater. 32, 10670–10677 (2020).

    Article  CAS  Google Scholar 

  66. Cho, H. et al. Studies on novel Yb-based candidate triangular quantum antiferromagnets: Ba3YbB3O9 and Ba3YbB9O18. Preprint at https://arxiv.org/abs/2104.01005 (2021).

  67. Khatua, J. et al. Magnetic properties of triangular lattice antiferromagnets Ba3RB9O18 (R = Yb, Er). Phys. Rev. B 106, 104408 (2022).

    Article  ADS  CAS  Google Scholar 

  68. Guo, S., Ghasemi, A., Broholm, C. L. & Cava, R. J. Magnetism on ideal triangular lattices in NaBaYb(BO2)2. Phys. Rev. Mater. 3, 094404 (2019).

    Article  CAS  Google Scholar 

  69. Studer, A. J., Hagen, M. E. & Noakes, T. J. WOMBAT: the high-intensity powder diffractometer at the opal reactor. Physica B: Condens. Matter 385–386, 1013 (2006).

    Article  ADS  CAS  Google Scholar 

  70. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condens. Matter 192, 55–69 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to D. Yu, L. Zhang, S. Gao, T. Shi and X.-F. Zhang for helpful discussions, E. Ressouche, K. Beauvois and P. Fouilloux for technical supports at ILL, and X. Lu and Y. Li for the help with the orientation of the single-crystal sample using X-ray Laue diffraction. This work was supported by the National Natural Science Foundation of China (grant nos. 12222412, 12074023, 11974036, 12047503, 12074024, 11834014, 52088101 and 12141002), Strategic Priority Research Program and Scientific Instrument Developing Program of the Chinese Academy of Sciences (CAS) (grant nos. XDB28000000, XDB33000000 and ZDKYYQ20210003), the National Key R&D Program of China (grant no. 2022YFA1402200), CAS Project for Young Scientists in Basic Research (grant no. YSBR-057) and the Fundamental Research Funds for the Central Universities in China. We thank the HPC-ITP for the technical support and generous allocation of CPU time. This work was supported by the Synergetic Extreme Condition User Facility and the beamline 1W1A of the Beijing Synchrotron Radiation Facility. The Australian Center for Neutron Scattering and ILL are gratefully acknowledged for providing neutron beam time through proposal nos. P14250 and 5-41-1193.

Author information

Authors and Affiliations

Authors

Contributions

W.L., J.X. and G.S. initiated this work. C.Z., B.L. and W.J. prepared the samples. J.X. and P.S. designed and performed the magnetocaloric measurements. J.X. and G.L. conducted the low-temperature specific heat measurements. J.X., Z.C., J.S., H.J., P.S., W.L. and G.S. conducted the magnetocaloric and specific heat data analysis. W.S., K.S., C.-W.W., C.Z. and W.J. performed the neutron scattering experiments. C.Z., Y.G., W.L. and W.J. analysed the neutron data. Y.G., N.X., X.-Y.L., Y.Q., Y.W. and W.L. conducted the microscopic spin model analysis and performed the many-body calculations. W.L., J.X., W.J., Y.G., P.S. and G.S. wrote the manuscript with input from all coauthors. W.J., W.L., P.S. and G.S. supervised the project.

Corresponding authors

Correspondence to Wentao Jin, Wei Li, Peijie Sun or Gang Su.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Sample structure characterization.

a Powder X-ray diffraction pattern of NBCP measured at room temperature. The red line indicates the calculated diffraction pattern for comparison. b Single-crystal X-ray diffraction pattern recorded for the (0,0,L) planes at room temperature. The insets show the photo of the NBCP single crystals grown from the same batch, which are used for the specific heat, magnetocaloric and neutron measurements, and the rocking-curve scan of the (003) reflection for one representative crystal. The very sharp peak profile with a full width at half maximum (FWHM) of 0.027° indicates the high quality of the crystals. c, d Images and X-ray Laue patterns of the single-crystal samples used for the neutron diffraction experiments at WOMBAT (50 mg, c) and D23 (125 mg, d), respectively, mounted on the Cu plates. Sharp and bright diffraction spots confirm good quality of the crystals. a.u., arbitrary units.

Source data

Extended Data Fig. 2 Energy level diagram of the Co2+ 4F state.

Under the effects of octahedral crystal electric field and spin-orbit coupling, the lowest lying ground state is a j = 1/2 Kramers doublet separated from the first excited j = 3/2 level by a gap of about Δ ≈ 70 meV31.

Extended Data Fig. 3 Photos of PPMS-based quasi-adiabatic demagnetization cooling measurement setups.

a Setup for the measurements of the NBCP single-crystal samples and the paramagnetic coolants FAA and CPA, with two gold-plated thermal shields. To enhance thermal insulation, we employed a Vespel straw to support the sliver stage. We connected the field-calibrated RuO2 thermometer using two pairs of twisted manganin wires (25 μm in diameter and approximately 30 cm in length) to minimize heat leakage. Additionally, two thermal shields were used to protect the sample column from thermal radiation and other parasitic heat loads from the PPMS chamber. These shields were connected using PEEK tubes. b shows the setup for a relatively large mass (50 g) GGG sample with a gold-plated thermal shield.

Extended Data Fig. 4 Analysis of the specific heat and magnetic entropy results measured under magnetic fields.

a The measured specific heat data (Cp) of NBCP under magnetic fields of 0.75 T and 2 T, both of which turn up at low temperature T 150 mK due to the nuclear spin Schottky anomaly. b The open symbols are estimated parameter αn of nuclear spin contributions for different fields, based on the fitted αn under 0.75 T and 2 T, and supposed to be linear vs. field B. The provided error bars are estimated based on the fitting uncertainty in the B = 0.75 T case. c-g show the total specific heat Cp (open symbols) under different fields, which contains the fitted nuclear spin contribution (dotted-dashed line) and phonon specific heat (dotted line). After subtracting these contributions, we show the resulting magnetic specific heat Cm with solid symbols. h-j The magnetic entropy can be obtained by taking the integration of the specific heat, and both measured data (Exp.) and model calculation (Th.) are shown. The red arrows indicate an ideal adiabatic demagnetization cooling process, which starts from the initial conditions T0 = 2 K and B0 = 4 T and end with lowest temperature Tcorr shown in Fig. 2a of the main text. The estimated error bars, which are based on the fitting uncertainty of nuclear contribution, are smaller than the size of symbols.

Source data

Extended Data Fig. 5 The magnon dispersion by the linear spin-wave theory.

a Magnon dispersion Ek calculated by the linear spin-wave theory at the supersolid transition \({B}_{{\rm{c3}}}^{* }\simeq 1.69\)(6) T, and the dashed box in a is expanded in b. The easy-axis TLAF model simulated here use the effective parameters, i.e., Jz/Jxy = 1.68, with two gapless quadratic modes at the K point. They enhance the low-energy density of states and give rise to notable entropic effect at low temperature. The results indicate a quantum critical point (QCP) with dynamical exponent z = 2. Since two order parameters, the solid order associated with lattice rotational \({{\mathbb{Z}}}_{3}\) symmetry breaking and the superfluid order with U(1) spin symmetry breaking, both vanish at the same  QCP (c.f., Fig. 3b in the main text), we argue that there may exist an emergent O(4) symmetry at the QCP that include the \({{\mathbb{Z}}}_{3}\times \) U(1) as its subgroup.

Extended Data Fig. 6 Comparisons on cooling performances.

a Quasi-adiabatic demagnetization cooling curves of NBCP (solid line) and GGG (dashed line) from the initial field of B0 = 4 T and different base temperatures T0 = 2-4 K. b compares the demagnetization cooling of NBCP with paramagnetic coolants CPA and FAA. The volumes of different materials are roughly equal (about 0.4 cm3). NBCP cools down much faster in the high-field regime, i.e., \({B}_{{\rm{c2}}}^{* }\le B\le {B}_{{\rm{c3}}}^{* }\) (V-type spin supersolid phase). We find NBCP cools down to 94 mK at about 1.5 T, much lower than that of paramagnets by ΔT 660 mK. The insets in a and b show single-crystal samples of NBCP (1.65 g, 0.395 cm3), GGG (50 g), FAA (0.7 g, 0.409 cm3), and CPA (0.76 g, 0.421 cm3) used in practical MCE measurements. c shows the volumetric magnetic entropy densities of NBCP at Bf = 0 T (solid line) and B0 = 4 T (dashed line). The heat absorption of NBCP ΔQc 19 mJ  cm−3 at zero field (indicated by the purple shaded area), which turns out to be much higher than those of FAA (3.0 mJ  cm−3) and CPA (3.1 mJ  cm−3) as reported in ref. 33. Therefore, NBCP is able to maintain the reached low temperatures for a longer period of time (hold time). As shown in d, the NBCP remains below 1 K for about 1.5 hours, while the temperatures of CPA and FAA quickly rise up and reach thermal equilibrium with 2 K environment within 30–40 mins. e tabulates the lowest cooling temperatures in the quasi-adiabatic demagnetization process from the same initial field B0 = 4 T and various initial temperature T0.

Source data

Extended Data Fig. 7 Low temperature magnetic Grüneisen ratio and location of quantum critical points.

a Magnetic Grüneisen ratio ΓB deduced from the isentropic T-B lines, \({\Gamma }_{B}=\frac{1}{T}{\left(\frac{\partial T}{\partial B}\right)}_{S}\), with the red (black) arrows indicating the dip (peak) locations. The quasi-adiabatic cooling starting from various low initial temperatures T0≤300 mK, and an initial field of B0 = 3 T. The lines have been shifted with a constant offset of 3.5 T−1 for the sake of clarity. b Characteristic (T, B) values, including those determined from \({T}_{{\rm{MCE}}}^{\min }\) (lowest temperature) and the peak (\({\Gamma }_{B}^{{\rm{peak}}}\)) and dip (\({\Gamma }_{B}^{{\rm{dip}}}\)) of ΓB. They naturally form quantum critical “fans” (orange shaded areas) that converge to the QCPs (\({B}_{{\rm{c1}}}^{* },{B}_{{\rm{c2}}}^{* },{B}_{{\rm{c3}}}^{* }\)) in the low temperature limit, denoted by the purple pentagons along with error bars estimated. c lists the field-induced quantum phase transitions (B // c axis) in NBCP, and compare our results to the previous experimental and theoretical works, where excellent agreements are seen.

Source data

Extended Data Fig. 8 Single-crystal neutron diffraction scans.

Reciprocal-space scans at 30 mK performed at WOMBAT in zero-field across (1/3, 1/3, 0.183), the strongest magnetic reflection, along a the in-plane (H, H, 0.183) direction and b out-of-plane (1/3, 1/3, L) direction, respectively. The solid and dashed lines represent the Gaussian fittings to the experimental data and the instrumental resolutions represented by the nuclear reflections, respectively. The fitted peak position in a is slightly off H = 1/3, due to the inaccuracy of the lattice constant a determined in the long-wavelength condition. Error bars represent the standard deviations in a and b. c-e Temperature dependencies of the representative magnetic reflections measured at D23, under different applied fields applied along the c axis. c and d show the rocking-curve scans of the (1/3, 1/3, 0.836) reflection appearing under B = 0 and the (2/3, 2/3, 0) reflection appearing under B = 0.8 T, respectively, while e represents the reciprocal-space scan for the (1/3, 1/3, 0.664) peak emerging under B = 1.3 T along the L direction. Int., Intensity; r.l.u., reciprocal lattice units.; a.u., arbitrary units.

Source data

Extended Data Fig. 9 Refinements to the magnetic diffraction intensities at 95 mK.

a and b tabulate the basis vectors of the irreducible representations (IRs) for the Co2+ ions on the 1b Wyckoff sites in NBCP, for k = (1/3, 1/3, 0.166) and k = (1/3, 1/3, 0), respectively, obtained from representation analysis. c and d show the comparisons between the observed and calculated integrated intensities of the non-equivalent magnetic reflections for B = 0 and B = 0.8 T, adopting the modulated and non-modulated UUD spin configurations with the irreducible representation Γ1 and Γ2, respectively. Error bars represent the standard deviations, and the R factors of the refinements are listed in both cases. a.u., arbitrary units.

Source data

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J., Zhang, C., Gao, Y. et al. Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2. Nature 625, 270–275 (2024). https://doi.org/10.1038/s41586-023-06885-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06885-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing