Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Functional genomics and systems biology in human neuroscience

Abstract

Neuroscience research has entered a phase of key discoveries in the realm of neurogenomics owing to strong financial and intellectual support for resource building and tool development. The previous challenge of tissue heterogeneity has been met with the application of techniques that can profile individual cells at scale. Moreover, the ability to perturb genes, gene regulatory elements and neuronal activity in a cell-type-specific manner has been integrated with gene expression studies to uncover the functional underpinnings of the genome at a systems level. Although these insights have necessarily been grounded in model systems, we now have the opportunity to apply these approaches in humans and in human tissue, thanks to advances in human genetics, brain imaging and tissue collection. We acknowledge that there will probably always be limits to the extent to which we can apply the genomic tools developed in model systems to human neuroscience; however, as we describe in this Perspective, the neuroscience field is now primed with an optimal foundation for tackling this ambitious challenge. The application of systems-level network analyses to these datasets will facilitate a deeper appreciation of human neurogenomics that cannot otherwise be achieved from directly observable phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mining human brain single-cell datasets to infer regulatory mechanisms.
Fig. 2: Integrative approaches to using human brain tissue to uncover multimodal systems related to genomics.

Similar content being viewed by others

References

  1. Geschwind, D. H. & Konopka, G. Neuroscience in the era of functional genomics and systems biology. Nature 461, 908–915 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berg, J. et al. Human neocortical expansion involves glutamatergic neuron diversification. Nature 598, 151–158 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Halvorsen, M. et al. Increased burden of ultra-rare structural variants localizing to boundaries of topologically associated domains in schizophrenia. Nat. Commun. 11, 1842 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sanders, S. J. et al. Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nat. Neurosci. 20, 1661–1668 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trost, B. et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 185, 4409–4427 e4418 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Bhaduri, A. et al. An atlas of cortical arealization identifies dynamic molecular signatures. Nature 598, 200–204 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Healy, L. M., Zia, S. & Plemel, J. R. Towards a definition of microglia heterogeneity. Commun. Biol. 5, 1114 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Batiuk, M. Y. et al. Upper cortical layer-driven network impairment in schizophrenia. Sci. Adv. 8, eabn8367 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gandal, M. J. et al. Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD. Nature 611, 532–539 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364, 685–689 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morabito, S. et al. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat. Genet. 53, 1143–1155 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of human cortical development. Nature 598, 205–213 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boldog, E. et al. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nat. Neurosci. 21, 1185–1195 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma, S. et al. Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science 377, eabo7257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caglayan, E. et al. Molecular features driving cellular complexity of human brain evolution. Nature 620, 145–153 (2023). References 16,17 present comparative single-cell transcriptomics studies of human and non-human primate brain to uncover cellular innovations, including cell-type-specific changes related to FOXP2, a key gene in brain development and disease.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Allen, D. E. et al. Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes. Science 376, 1441–1446 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Delgado, R. N. et al. Individual human cortical progenitors can produce excitatory and inhibitory neurons. Nature 601, 397–403 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. You, Z. et al. Mapping of clonal lineages across developmental stages in human neural differentiation. Cell Stem Cell 30, 473–487 e479 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Chung, C. et al. Comprehensive multi-omic profiling of somatic mutations in malformations of cortical development. Nat. Genet. 55, 209–220 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller, M. B. et al. Somatic genomic changes in single Alzheimer’s disease neurons. Nature 604, 714–722 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016). This study presents the utility of a method to simultaneously profile electrophysiological activity and transcriptional identity of neurons.

    Article  CAS  PubMed  Google Scholar 

  25. The Brain Initiative Cell Census Network. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598, 86–102 (2021). The Brain Initiative Cell Census Network assembled single-cell tools and multiomic profiling to enable the study of cell types in mammalian systems with some of the first atlas resources of the human brain.

    Article  Google Scholar 

  26. Scala, F. et al. Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature 598, 144–150 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, M. et al. Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH. Nature 598, 137–143 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Munoz-Castaneda, R. et al. Cellular anatomy of the mouse primary motor cortex. Nature 598, 159–166 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Z. et al. Epigenomic diversity of cortical projection neurons in the mouse brain. Nature 598, 167–173 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joglekar, A. et al. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat. Commun. 12, 463 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932–935 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Ding, S. L. et al. Comprehensive cellular-resolution atlas of the adult human brain. J. Comp. Neurol. 524, 3127–3481 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fang, R. et al. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science 377, 56–62 (2022). This study compares cortical cell types and organization using spatial transcriptomic approaches, identifying differences in cell subtype composition and spatial arrangements.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Speir, M. L. et al. UCSC Cell Browser: visualize your single-cell data. Bioinformatics 37, 4578–4580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tabula Sapiens, C. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  38. Tryka, K. A. et al. NCBI’s Database of Genotypes and Phenotypes: dbGaP. Nucleic Acids Res. 42, D975–D979 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Schwarz, N. et al. Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease. eLife 8, e48417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ting, J. T. et al. A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits. Sci. Rep. 8, 8407 (2018). References 39,40 describe methods for culturing human brain tissue from surgical patients and enable viral tracing of cell types and accessible intracortical connections.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Luo, C. et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genom 2, 100107 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Y. E. et al. A comparative atlas of single-cell chromatin accessibility in the human brain. Science 382, eadf7044 (2023).

  43. Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE 13, e0209648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Caglayan, E., Liu, Y. & Konopka, G. Neuronal ambient RNA contamination causes misinterpreted and masked cell types in brain single-nuclei datasets. Neuron 110, 4043–4056 e4045 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. DeWeerdt, S. How to map the brain. Nature 571, S6–S8 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Sherwood, C. C. et al. Invariant synapse density and neuronal connectivity scaling in primate neocortical evolution. Cereb. Cortex 30, 5604–5615 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Alzu’bi, A., Homman-Ludiye, J., Bourne, J. A. & Clowry, G. J. Thalamocortical afferents innervate the cortical subplate much earlier in development in primate than in rodent. Cereb. Cortex 29, 1706–1718 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lopez-Bendito, G. Development of the thalamocortical interactions: past, present and future. Neuroscience 385, 67–74 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, L. et al. A cross-species proteomic map reveals neoteny of human synapse development. Nature 622, 112–119 (2023).

  50. Laszlo, Z. I. et al. Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex. Acta Neuropathol. Commun. 10, 156 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hesse, R. et al. Comparative profiling of the synaptic proteome from Alzheimer’s disease patients with focus on the APOE genotype. Acta Neuropathol. Commun. 7, 214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carlyle, B. C. et al. Synaptic proteins associated with cognitive performance and neuropathology in older humans revealed by multiplexed fractionated proteomics. Neurobiol. Aging 105, 99–114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Graham, L. C. et al. Regional molecular mapping of primate synapses during normal healthy aging. Cell Rep. 27, 1018–1026.e1014 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Niu, M. et al. Droplet-based transcriptome profiling of individual synapses. Nat. Biotechnol. 41, 1332–1344 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Hobson, B. D. & Herzog, E. Methodological concerns and lack of evidence for single-synapse RNA-seq. Nat. Biotechnol. 41, 1221–1224 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Niu, M. & Zong, C. Reply to: Methodological concerns and lack of evidence for single-synapse RNA-seq. Nat. Biotechnol. 41, 1225–1228 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Perez, J. D. et al. Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons. eLife 10, e63092 (2021). This paper demonstrated that subcellular, single-cell-resolution transcriptional profiling provides additional information in interneurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Finke, S. & Conzelmann, K. K. Replication strategies of rabies virus. Virus Res. 111, 120–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saunders, A. et al. Ascertaining cells’ synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries. Nat. Commun. 13, 6993 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  61. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yuan, L., Chen, X., Zhan, H., Gilbert, H. L. & Zador, A. M. Massive multiplexing of spatially resolved single neuron projections with axonal BARseq. Preprint at bioRxiv https://doi.org/10.1101/2023.02.18.528865 (2023).

  63. Graybuck, L. T. et al. Enhancer viruses for combinatorial cell-subclass-specific labeling. Neuron 109, 1449–1464.e1413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mich, J. K. et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep. 34, 108754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vanderhaeghen, P. & Polleux, F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat. Rev. Neurosci. 24, 213–232 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Linaro, D. et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104, 972–986.e976 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Revah, O. et al. Maturation and circuit integration of transplanted human cortical organoids. Nature 610, 319–326 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kelley, K. W., Nakao-Inoue, H., Molofsky, A. V. & Oldham, M. C. Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes. Nat. Neurosci. 21, 1171–1184 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017). This single-cell profiling of the developing human cortex serves as a reference dataset for cell types and identified differences in transcriptional profiles across cortical regions during development.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756.e717 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Feregrino, C. & Tschopp, P. Assessing evolutionary and developmental transcriptome dynamics in homologous cell types. Dev. Dyn. 251, 1472–1489 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Morabito, S., Reese, F., Rahimzadeh, N., Miyoshi, E. & Swarup, V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Rep. Methods https://doi.org/10.1016/j.crmeth.2023.100498 (2023).

  75. Van de Sande, B. et al. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 15, 2247–2276 (2020).

    Article  PubMed  Google Scholar 

  76. Costa, I. G. Dissecting gene regulation with multimodal sequencing. Nat. Methods 20, 1282–1284 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Wu, S. J. et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat. Biotechnol. 39, 819–824 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Park, Y. P. & Kellis, M. CoCoA-diff: counterfactual inference for single-cell gene expression analysis. Genome Biol. 22, 228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Brendel, M. et al. Application of deep learning on single-cell RNA sequencing data analysis: a review. Genomics Proteomics Bioinformatics 20, 814–835 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ma, Q. & Xu, D. Deep learning shapes single-cell data analysis. Nat. Rev. Mol. Cell Biol. 23, 303–304 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e1817 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Weiss, C. V. et al. The cis-regulatory effects of modern human-specific variants. eLife 10, e63713 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Whalen, S. et al. Machine learning dissection of human accelerated regions in primate neurodevelopment. Neuron 111, 857–873.e858 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425–436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 54, 1320–1331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mollon, J., Almasy, L., Jacquemont, S. & Glahn, D. C. The contribution of copy number variants to psychiatric symptoms and cognitive ability. Mol. Psychiatry 28, 1480–1493 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021). References 90,91 harness the large UK Biobank resource to integrate genetic information with other features of the human brain including brain imaging and other phenotypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bogdan, R., Hatoum, A. S., Johnson, E. C. & Agrawal, A. The genetically informed neurobiology of addiction (GINA) model. Nat. Rev. Neurosci. 24, 40–57 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Konopka, G. Cognitive genomics: linking genes to behavior in the human brain. Netw. Neurosci. 1, 3–13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Richiardi, J. et al. Correlated gene expression supports synchronous activity in brain networks). Science 348, 1241–1244 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, G. Z. et al. Correspondence between resting-state activity and brain gene expression. Neuron 88, 659–666 (2015). References 94,95 integrated transcriptional profiling and brain imaging to begin to link gene expression and human brain function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Berto, S. et al. Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder. Nat. Commun. 13, 3328 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  97. Romero-Garcia, R. et al. Schizotypy-related magnetization of cortex in healthy adolescence is colocated with expression of schizophrenia-related genes. Biol. Psychiatry 88, 248–259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Seidlitz, J. et al. Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic disorders. Nat. Commun. 11, 3358 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  99. Buch, A. M. et al. Molecular and network-level mechanisms explaining individual differences in autism spectrum disorder. Nat. Neurosci. 26, 650–663 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Kong, X. Z. et al. Gene expression correlates of the cortical network underlying sentence processing. Neurobiol. Lang. 1, 77–103 (2020).

    Article  Google Scholar 

  101. Berto, S. et al. Gene-expression correlates of the oscillatory signatures supporting human episodic memory encoding. Nat. Neurosci. 24, 554–564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Eugene, E. et al. An organotypic brain slice preparation from adult patients with temporal lobe epilepsy. J. Neurosci. Methods 235, 234–244 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  103. de la Torre-Ubieta, L. et al. The dynamic landscape of open chromatin during human cortical neurogenesis. Cell 172, 289–304.e218 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Markenscoff-Papadimitriou, E. et al. A chromatin accessibility atlas of the developing human telencephalon. Cell 182, 754–769.e718 (2020). References 103,104 utilize the characterization of epigenetic state to describe the regulatory programs found during human brain development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Won, H. et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538, 523–527 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  106. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Ludwig, L. S. et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176, 1325–1339.e1322 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xu, J. et al. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. eLife 8, e45105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Meyer, M. et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc. Natl Acad. Sci. USA 112, 851–856 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Radecki, G., Nargeot, R., Jelescu, I. O., Le Bihan, D. & Ciobanu, L. Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica. Proc. Natl Acad. Sci. USA 111, 8667–8672 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  111. Velmeshev, D. et al. Single-cell analysis of prenatal and postnatal human cortical development. Science 382, eadf0834 (2023).

  112. Zhu, K. et al. Multi-omic profiling of the developing human cerebral cortex at the single-cell level. Sci. Adv. 9, eadg3754 (2023).

  113. Johansen, N., et al. Interindividual variation in human cortical cell type abundance and expression. Science 382, eadf2359 (2023).

  114. Jorstad, N. L. et al. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812 (2023).

  115. Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023).

  116. Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathology. Cell 186, 4365–4385 (2023).

  117. Fan, X. et al. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell Res. 28, 730–745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555, 524–528 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Polioudakis, D. et al. A single-cell transcriptomic atlas of human neocortical development during mid-gestation. Neuron 103, 785–801 e788 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fan, X. et al. Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development. Sci. Adv. 6, eaaz2978 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Eze, U. C., Bhaduri, A., Haeussler, M., Nowakowski, T. J. & Kriegstein, A. R. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat. Neurosci. 24, 584–594 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Smith, R. S. et al. Early role for a Na+,K+-ATPase (ATP1A3) in brain development. Proc. Natl Acad. Sci. USA 118, e2023333118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ramos, S. I. et al. An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics. Nat. Commun. 13, 7671 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Braun, E. et al. Comprehensive cell atlas of the first-trimester developing human brain. Science 382, eadf1226 (2023).

  125. Herring, C. A. et al. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 185, 4428–4447.e4428 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Cameron, D. et al. Single-nuclei RNA sequencing of 5 regions of the human prenatal brain implicates developing neuron populations in genetic risk for schizophrenia. Biol. Psychiatry 93, 157–166 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Krienen, F. M. et al. Innovations present in the primate interneuron repertoire. Nature 586, 262–269 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hodes, R. J. & Buckholtz, N. Accelerating Medicines Partnership: Alzheimer’s disease (AMP-AD) knowledge portal aids Alzheimer’s drug discovery through open data sharing. Expert Opin. Ther. Targets 20, 389–391 (2016).

    Article  PubMed  Google Scholar 

  130. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bressan, E. et al. The Foundational Data Initiative for Parkinson disease: enabling efficient translation from genetic maps to mechanism. Cell Genom. 3, 100261 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Bhaduri and Konopka laboratories for feedback on the manuscript and R. Vollmer for assistance with Figs. 1 and 2. The Bhaduri laboratory is supported by NIMH (UM1MH130991, R00NS111731), Klingenstein-Simons Neuroscience Fellowship, Brain Behavior & Research Young Investigator Award, and The Alfred P. Sloan Foundation Fellowship. G.K. is a Jon Heighten Scholar in Autism Research and Townsend Distinguished Chair in Research on Autism Spectrum Disorders at UT Southwestern. The Konopka laboratory is supported by NIMH (MH126481), NINDS (NS126143, NS115821), NHGRI (HG011641), the Simons Foundation (947591), and the James S. McDonnell Foundation 21st Century Science Initiative in Understanding Human Cognition—Scholar Award (220020467).

Author information

Authors and Affiliations

Authors

Contributions

G.K. and A.B. wrote the manuscript.

Corresponding authors

Correspondence to Genevieve Konopka or Aparna Bhaduri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konopka, G., Bhaduri, A. Functional genomics and systems biology in human neuroscience. Nature 623, 274–282 (2023). https://doi.org/10.1038/s41586-023-06686-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06686-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing