Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The evolution of fast-growing coral reef fishes

Abstract

Individual growth is a fundamental life history trait1,2,3,4, yet its macroevolutionary trajectories have rarely been investigated for entire animal assemblages. Here we analyse the evolution of growth in a highly diverse vertebrate assemblage—coral reef fishes. We combine state-of-the-art extreme gradient boosted regression trees with phylogenetic comparative methods to detect the timing, number, location and magnitude of shifts in the adaptive regime of somatic growth. We also explored the evolution of the allometric relationship between body size and growth. Our results show that the evolution of fast growth trajectories in reef fishes has been considerably more common than the evolution of slow growth trajectories. Many reef fish lineages shifted towards faster growth and smaller body size evolutionary optima in the Eocene (56–33.9 million years ago), pointing to a major expansion of life history strategies in this Epoch. Of all lineages examined, the small-bodied, high-turnover cryptobenthic fishes shifted most towards extremely high growth optima, even after accounting for body size allometry. These results suggest that the high global temperatures of the Eocene5 and subsequent habitat reconfigurations6 might have been critical for the rise and retention of the highly productive, high-turnover fish faunas that characterize modern coral reef ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenetic reconstruction of reef fish growth.
Fig. 2: The location and magnitude of growth regime shifts in the reef fish phylogeny.
Fig. 3: Evolutionary regime shifts in the allometry between growth and maximum body length in reef fishes.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed as part of this study are available at Zenodo (https://doi.org/10.5281/zenodo.7797270)67. There are no restrictions on data availability. The phylogeny used in the main analyses was downloaded from The Fish Tree of Life (https://fishtreeoflife.org). Publicly available datasets used in the study include: FishBase (http://www.fishbase.org) and the data repository of ref. 26 (https://doi.org/10.4225/28/5ae8f3cc790f9). Source data are provided with this paper.

Code availability

The R (v.4.1.0) packages used were as follows: tidyverse, ggplot2, ape, phytools, geiger, ggtree, cowplot, viridis, raster, parallel, XGBoost, Matrix, pdp, data.table, png, grid, phangorn, bayou, mvMORPH, PCMBase, PCMBaseCpp and PCMFit. Package versions are provided in the Reporting Summary. The codes used during this study are available at Zenodo (https://doi.org/10.5281/zenodo.7797270)67.

References

  1. Wong, S., Bigman, J. S. & Dulvy, N. K. The metabolic pace of life histories across fishes. Proc. R. Soc. B 288, 20210910 (2021).

    PubMed  PubMed Central  Google Scholar 

  2. Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224 (2019).

    PubMed  Google Scholar 

  3. Charnov, E. L. & Berrigan, D. Evolution of life history parameters in animals with indeterminate growth, particularly fish. Evol. Ecol. 5, 63–68 (1991).

    Google Scholar 

  4. Dmitriew, C. M. The evolution of growth trajectories: what limits growth rate? Biol. Rev. 86, 97–116 (2011).

    PubMed  Google Scholar 

  5. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    ADS  CAS  PubMed  Google Scholar 

  6. Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92, 878–901 (2017).

    PubMed  Google Scholar 

  7. Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).

    Google Scholar 

  8. Ricklefs, R. E. & Wikelski, M. The physiology/life-history nexus. Trends Ecol. Evol. 17, 462–468 (2002).

    Google Scholar 

  9. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Google Scholar 

  10. Jennings, S., Greenstreet, S. P. R. & Reynolds, J. D. Structural change in an exploited fish community: a consequence of differential fishing effects on species with contrasting life histories. J. Anim. Ecol. 68, 617–627 (1999).

    Google Scholar 

  11. Reynolds, J. D. In Macroecology (eds Blackburn, T. M. & Gaston, K. J.) 195–217 (Blackwell Publishing, 2003).

  12. Thygesen, U. H., Farnsworth, K. D., Andersen, K. H. & Beyer, J. E. How optimal life history changes with the community size-spectrum. Proc. R. Soc. B 272, 1323–1331 (2005).

    PubMed  PubMed Central  Google Scholar 

  13. Arendt, J. D. Adaptive intrinsic growth rates: an integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).

    Google Scholar 

  14. Heino, M. & Kaitala, V. Evolution of resource allocation between growth and reproduction in animals with indeterminate growth. J. Evol. Biol. 12, 423–429 (1999).

    Google Scholar 

  15. Caley, M. J. & Schwarzkopf, L. Complex growth rate evolution in a latitudinally widespread species. Evolution 58, 862–869 (2004).

    PubMed  Google Scholar 

  16. Lindgren, B. & Laurila, A. Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria. J. Evol. Biol. 18, 820–828 (2005).

    CAS  PubMed  Google Scholar 

  17. Abrams, P. A., Leimar, O., Nylin, S. & Wiklund, C. The effect of flexible growth rates on optimal sizes and development times in a seasonal environment. Am. Nat. 147, 381–395 (1996).

    Google Scholar 

  18. Santodomingo, N., Wallace, C. C. & Johnson, K. G. Fossils reveal a high diversity of the staghorn coral genera Acropora and Isopora (Scleractinia: Acroporidae) in the Neogene of Indonesia. Zool. J. Linn. Soc. 175, 677–763 (2015).

    Google Scholar 

  19. Siqueira, A. C., Morais, R. A., Bellwood, D. R. & Cowman, P. F. Trophic innovations fuel reef fish diversification. Nat. Commun. 11, 2669 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).

    ADS  CAS  PubMed  Google Scholar 

  21. Morais, R. A., Siqueira, A. C., Smallhorn-West, P. F. & Bellwood, D. R. Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol. 19, e3001435 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Frýdlová, P. et al. Determinate growth is predominant and likely ancestral in squamate reptiles. Proc. R. Soc. B 287, 20202737 (2020).

    PubMed  PubMed Central  Google Scholar 

  23. Bellwood, D. R. & Wainwright, P. C. In Coral Reef Fishes: Dynamics and Diversity on a Complex Ecosystem (ed. Sale, P. F.) 5–32 (Academic, 2002).

  24. Depczynski, M. & Bellwood, D. R. Extremes, plasticity, and invariance in vertebrate life history traits: insights from coral reef fishes. Ecology 87, 3119–3127 (2006).

    PubMed  Google Scholar 

  25. Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527 (2019).

    CAS  PubMed  Google Scholar 

  26. Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish Fish. 19, 874–889 (2018).

    Google Scholar 

  27. Beukhof, E. et al. Marine fish traits follow fast-slow continuum across oceans. Sci. Rep. 9, 17878 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  28. Denney, N. H., Jennings, S. & Reynolds, J. D. Life–history correlates of maximum population growth rates in marine fishes. Proc. R. Soc. Lond. B 269, 2229–2237 (2002).

    Google Scholar 

  29. Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs 39, 1221–1231 (2020).

    Google Scholar 

  30. Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    ADS  CAS  PubMed  Google Scholar 

  31. Uyeda, J. C. & Harmon, L. J. A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Syst. Biol. 63, 902–918 (2014).

    PubMed  Google Scholar 

  32. Ghezelayagh, A. et al. Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Nat. Ecol. Evol. 6, 1211–1220 (2022).

    PubMed  Google Scholar 

  33. Mitov, V., Bartoszek, K. & Stadler, T. Automatic generation of evolutionary hypotheses using mixed Gaussian phylogenetic models. Proc. Natl Acad. Sci USA 116, 16921–16926 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cowman, P. F. & Bellwood, D. R. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots. J. Evol. Biol. 24, 2543–2562 (2011).

    CAS  PubMed  Google Scholar 

  35. Bellwood, D. R., Goatley, C. H. R., Cowman, P. F., Bellwood, O. & Mora, C. In Ecology of Fishes on Coral Reefs (ed. Mora, C.) 55–63 (Cambridge Univ. Press, 2015).

  36. Cowman, P. F., Bellwood, D. R. & van Herwerden, L. Dating the evolutionary origins of wrasse lineages (Labridae) and the rise of trophic novelty on coral reefs. Mol. Phylogenet. Evol. 52, 621–631 (2009).

    CAS  PubMed  Google Scholar 

  37. Bellwood, D. R., Hoey, A. S., Bellwood, O. & Goatley, C. H. R. Evolution of long-toothed fishes and the changing nature of fish-benthos interactions on coral reefs. Nat. Commun. 5, 3144 (2014).

    ADS  PubMed  Google Scholar 

  38. Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).

    ADS  CAS  PubMed  Google Scholar 

  39. Lindmark, M., Audzijonyte, A., Blanchard, J. L. & Gårdmark, A. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming. Glob. Change Biol. 28, 6239–6253 (2022).

    CAS  Google Scholar 

  40. Friedman, M. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc. R. Soc. B 277, 1675–1683 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. Sibert, E. C. & Norris, R. D. New age of fishes initiated by the Cretaceous−Paleogene mass extinction. Proc. Natl Acad. Sci. USA 112, 8537–8542 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patterson, C. An overview of the early fossil record of acanthomorphs. Bull. Mar. Sci. 52, 29–59 (1993).

    Google Scholar 

  43. Marramà, G., Giusberti, L. & Carnevale, G. A Rupelian coral reef fish assemblage from the Venetian Southern Alps (Berici Hills, NE Italy). Riv. Ital. Paleontol. S. 128, 469–513 (2022).

    Google Scholar 

  44. Marramà, G., Garbelli, C. & Carnevale, G. A clade-level morphospace for the Eocene fishes of Bolca: patterns and relationships with modern tropical shallow marine assemblages. B. Soc. Paleontol. Ital. 55, 139–156 (2016).

    Google Scholar 

  45. Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126 (2014).

    Google Scholar 

  46. Mihaljević, M., Renema, W., Welsh, K. & Pandolfi, J. M. Eocene-Miocene shallow-water carbonate platforms and increased habitat diversity in Sarawak, Malaysia. Palaios 29, 378–391 (2014).

    ADS  Google Scholar 

  47. Renema, W. et al. Are coral reefs victims of their own past success? Sci. Adv. 2, e150085 (2016).

    Google Scholar 

  48. Siqueira, A. C., Kiessling, W. & Bellwood, D. R. Fast-growing species shape the evolution of reef corals. Nat. Commun. 13, 2426 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Depczynski, M., Fulton, C. J., Marnane, M. J. & Bellwood, D. R. Life history patterns shape energy allocation among fishes on coral reefs. Oecologia 153, 111–120 (2007).

    ADS  PubMed  Google Scholar 

  50. Brandl, S. J. et al. Response to Comment on “Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning”. Science 366, eaaz1301 (2019).

    CAS  PubMed  Google Scholar 

  51. Choat, J. H. Marine biology: ageing a ‘living fossil’. Curr. Biol. 31, R998–R1000 (2021).

    CAS  PubMed  Google Scholar 

  52. Schiettekatte, N. M. D., Brandl, S. J. & Casey, J. M. fishualize: color palettes based on fish species. R package version 0.2.0 (2020).

  53. von Bertalanffy, L. Problems of organic growth. Nature 163, 156–158 (1949).

    ADS  CAS  PubMed  Google Scholar 

  54. Froese, R. & Pauly, D. FishBase. Version 04/2021 (2021); www.fishbase.org.

  55. Pauly, D. Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy′s growth formula. Ber. Inst. Meeresk. Kiel 63, 1–156 (1979).

    Google Scholar 

  56. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS  PubMed  Google Scholar 

  57. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM, 2016).

  58. Mitchell, R. & Frank, E. Accelerating the XGBoost algorithm using GPU computing. PeerJ Comput. Sci. 3, e127 (2017).

    Google Scholar 

  59. Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  60. Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).

    Google Scholar 

  61. Eastman, J. M., Harmon, L. J. & Tank, D. C. Congruification: support for time scaling large phylogenetic trees. Methods Ecol. Evol. 4, 688–691 (2013).

    Google Scholar 

  62. Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).

    CAS  PubMed  Google Scholar 

  63. Smith, S. A. & O’Meara, B. C. TreePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    CAS  PubMed  Google Scholar 

  64. Bannikov, A. F. Revision of some Eocene fishes from Bolca, Northern Italy, previously classified with the Apogonidae and Enoplosidae. Stud. Ric. Giacimenti Terziari Bolca 12, 65–76 (2008).

    Google Scholar 

  65. Cantalice, K. M., Alvarado-Ortega, J., Bellwood, D. R. & Siqueira, A. C. Rising from the ashes: the biogeographic origins of modern coral reef fishes. Bioscience 72, 769–777 (2022).

    PubMed  PubMed Central  Google Scholar 

  66. Mitov, V., Bartoszek, K., Asimomitis, G. & Stadler, T. Fast likelihood calculation for multivariate Gaussian phylogenetic models with shifts. Theor. Popul. Biol. 131, 66–78 (2020).

    PubMed  MATH  Google Scholar 

  67. Siqueira, A. C., Yan, H. F., Morais, R. A. & Bellwood, D. R. Data from “The evolution of fast-growing coral reef fishes”. Zenodo https://doi.org/10.5281/zenodo.7797270 (2023).

Download references

Acknowledgements

We thank J. Uyeda and V. Mitov for assistance with their R packages. Funding was provided by the Australian Research Council (D.R.B., LF190100062), with a Postdoctoral Fellowship to A.C.S. and a PhD Scholarship to H.F.Y. Funding for H.F.Y. was also provided by a Natural Sciences and Engineering Research Council of Canada Postgraduate Doctoral Scholarship. R.A.M. is supported by a Branco Weiss Fellowship Society in Science and a PSL Junior Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.C.S., H.F.Y., R.A.M. and D.R.B. conceived the study. A.C.S., H.F.Y. and R.A.M. collected the data. A.C.S. and H.F.Y. performed the analyses and wrote the first draft of the manuscript. R.A.M. and D.R.B. contributed substantially to revisions.

Corresponding author

Correspondence to Alexandre C. Siqueira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Tim Coulson, Luiz Rocha and the other, anonymous, reviewer(s) for their contribution to this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Phylogenetic reconstruction of reef fish growth.

Standardized growth coefficient (Kmax) reconstructed through time across the phylogenetic tree of coral reef-associated fishes. The points represent estimated shifts in the evolutionary regime of growth detected through multi-optima Ornstein–Uhlenbeck models, using 50% as the threshold for posterior probabilities. Light-yellow points represent shifts toward higher values of evolutionary optima (i.e. faster growth rates), while dark-blue points represent the opposite. Please note that the y-axis is on a log10 scale. The inset depicts the number of positive shifts divided by the total branch length in the phylogeny per geological epoch (y-axis) through time (x-axis). This metric gives an indication of the probability of shifts controlled by the availability of locations for them to occur, which is biased towards very old shifts. We note that the higher number of shifts/branch length detected for the Jurassic is a product of this bias and should be interpreted with caution given that it is the result of only one shift in that Period. The red line represents the Cretaceous-Paleogene (K/Pg) boundary. Pi: Pliocene; Pe: Pleistocene.

Source data

Extended Data Fig. 2 Proportional change in reef fish Kmax evolutionary optima through time.

Light-yellow points represent shifts toward higher values of evolutionary optima (i.e. faster growth rates), while the dark-blue point represents the opposite. The size of points is scaled according to their posterior probability in Ornstein–Uhlenbeck models.

Source data

Extended Data Fig. 3 Phylogenetic reconstruction of reef fish growth.

Standardized growth coefficient (Kmax) reconstructed through time across the phylogenetic tree of coral reef-associated fishes, recalibrated based on Ghezelayagh et al. 32 (see Methods). The points represent estimated shifts in the evolutionary regime of growth detected through multi-optima Ornstein–Uhlenbeck models. Light-yellow points represent shifts toward higher values of evolutionary optima (i.e. faster growth rates), while dark-blue points represent the opposite. Please note that the y-axis is on a log10 scale. The inset depicts the number of positive shifts divided by the total branch length in the phylogeny per geological epoch (y-axis) through time (x-axis). This metric gives an indication of the probability of shifts controlled by the availability of locations for them to occur. The red line represents the Cretaceous-Paleogene (K/Pg) boundary. Pi: Pliocene; Pe: Pleistocene.

Source data

Extended Data Fig. 4 Phylogenetic reconstruction of reef fish body size.

Maximum body length reconstructed through time across the phylogenetic tree of coral reef-associated fishes. The points represent estimated shifts in the evolutionary regime of body size detected through multi-optima Ornstein–Uhlenbeck models. Light-yellow points represent shifts toward higher values of evolutionary optima (i.e. larger body sizes), while dark-blue points represent the opposite. Please note that the y-axis is on a log10 scale. The inset depicts the number of negative shifts (i.e. towards smaller body sizes) divided by the total branch length in the phylogeny per geological epoch (y-axis) through time (x-axis). This metric gives an indication of the probability of shifts controlled by the availability of locations for them to occur. The red line represents the Cretaceous-Paleogene (K/Pg) boundary. Pi: Pliocene; Pe: Pleistocene.

Source data

Extended Data Fig. 5 Evolutionary regimes in the allometry growth/body size in reef fishes.

Reef fish phylogeny at the genus level with depicted evolutionary regimes for the allometric relationship between the growth coefficient (Kmax) and maximum body length. The different colours across the branches represent the clades with different evolutionary regimes detected by the mixed Gaussian phylogenetic model (see Methods). The coefficients estimated for each regime are shown in Fig. 3, with the respective colours. External arcs show the extant families represented by each clade, along with respective allometric evolutionary regime.

Source data

Extended Data Fig. 6 Empirical Kmax values for reef vs. non-reef fish species.

Density plots illustrating the distribution of empirical Kmax values for coral reef-associated species considered in this study (orange) and non-reef-associated species (blue). Details on data collection for non-reef-associated species can be found in the supplementary material. The thick lines indicate the median Kmax values for each group. Please note that the x-axis is on a log10 scale.

Source data

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures, Supplementary Tables and Supplementary References.

Reporting Summary

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siqueira, A.C., Yan, H.F., Morais, R.A. et al. The evolution of fast-growing coral reef fishes. Nature 618, 322–327 (2023). https://doi.org/10.1038/s41586-023-06070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06070-z

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing