Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclic evolution of phytoplankton forced by changes in tropical seasonality

Abstract

Although the role of Earth’s orbital variations in driving global climate cycles has long been recognized, their effect on evolution is hitherto unknown. The fossil remains of coccolithophores, a key calcifying phytoplankton group, enable a detailed assessment of the effect of cyclic orbital-scale climate changes on evolution because of their abundance in marine sediments and the preservation of their morphological adaptation to the changing environment1,2. Evolutionary genetic analyses have linked broad changes in Pleistocene fossil coccolith morphology to species radiation events3. Here, using high-resolution coccolith data, we show that during the last 2.8 million years the morphological evolution of coccolithophores was forced by Earth’s orbital eccentricity with rhythms of around 100,000 years and 405,000 years—a distinct spectral signature to that of coeval global climate cycles4. Simulations with an Earth System Model5 coupled with an ocean biogeochemical model6 show a strong eccentricity modulation of the seasonal cycle, which we suggest directly affects the diversity of ecological niches that occur over the annual cycle in the tropical ocean. Reduced seasonality in surface ocean conditions favours species with mid-size coccoliths, increasing coccolith carbonate export and burial; whereas enhanced seasonality favours a larger range of coccolith sizes and reduced carbonate export. We posit that eccentricity pacing of phytoplankton evolution contributed to the strong 405,000-year cyclicity that is seen in global carbon cycle records.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Noelaerhabdaceae coccolith morphology and accumulation, eccentricity, and climate over the last 2.8 million years.
Fig. 2: MDI concept.
Fig. 3: Modelled NPP seasonal contrast under different eccentricity configurations and MDI.

Similar content being viewed by others

Data availability

All coccolith morphological data, as well as all model outputs described in the paper (including NPP and main oceanic and atmospheric variables) are archived at the SEANOE open access data repository: https://doi.org/10.17882/84031. LMDZ, XIOS, NEMO and ORCHIDEE are released under the terms of the CeCILL license. OASIS-MCT is released under the terms of the Lesser GNU General Public License (LGPL). IPSL-CM5A2 source code is publicly available through svn, with the following commands line : svn co http://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/branches/publications/IPSLCM5A2.1_11192019 modipsl ; cd modipsl/util ; ./model IPSLCM5A2.1. The mod.def file provides information regarding the different revisions used, namely: NEMOGCM branch nemo_v3_6_STABLE revision 6665; XIOS2 branchs/xios-2.5 revision 1763; IOIPSL/src svn tags/v2_2_2; LMDZ5 branches/IPSLCM5A2.1 rev 3591; branches/publications/ORCHIDEE_IPSLCM5A2.1.r5307 rev 6336; and OASIS3-MCT 2.0_branch (rev 4775 IPSL server). The login/password combination requested at first use to download the ORCHIDEE component is anonymous/anonymous. We recommend that you refer to the project website: http://forge.ipsl.jussieu.fr/igcmg_doc/wiki/Doc/Config/IPSLCM5A2 for a proper installation and compilation of the environment.

References

  1. Beaufort, L. et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature 476, 80–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Henderiks, J. & Bollmann, J. The Gephyrocapsa sea surface palaeothermometer put to the test: comparison with alkenone and foraminifera proxies off NW Africa. Mar. Micropaleontol. 50, 161–184 (2004).

    Article  ADS  Google Scholar 

  3. Bendif, E. M. et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat. Commun. 10, 4234 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  4. Ruddiman, W. F. & Raymo, M. E. Northern Hemisphere climate regimes during the past 3 Ma: possible tectonic connections. Phil. Trans. R. Soc. B. Biol. Sci.318, 411–430 (1988).

  5. Sepulchre, P. et al. IPSL-CM5A2—an Earth System Model designed for multi-millennial climate simulations. Geosci. Model Dev. 13, 3011–3053 (2020).

    Article  CAS  ADS  Google Scholar 

  6. Aumont, O., Éthé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).

    Article  CAS  ADS  Google Scholar 

  7. Broecker, W. & Clark, E. Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments. Paleoceanography 24, PA3205 (2009).

    Article  ADS  Google Scholar 

  8. Suchéras-Marx, B. et al. The colonization of the oceans by calcifying pelagic algae. Biogeosciences 16, 2501–2510 (2019).

    Article  ADS  Google Scholar 

  9. Ridgwell, A. & Zeebe, R. E. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005).

    Article  CAS  ADS  Google Scholar 

  10. Young, J. et al. A guide to extant coccolithophore taxonomy. Journal of Nannoplankton Research, Special Issue 1, 1–132 (2003).

    Google Scholar 

  11. Henderiks, J. Coccolithophore size rules—reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths. Mar. Micropaleontol. 67, 143–154 (2008).

    Article  ADS  Google Scholar 

  12. Filatov, D. A. Extreme Lewontin’s paradox in ubiquitous marine phytoplankton species. Mol. Biol. Evol. 36, 4–14 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Bown, P. R. Calcareous nannoplankton evolution: a tale of two oceans. Micropaleontology 51, 299–308 (2005).

    Article  Google Scholar 

  14. Si, W. & Rosenthal, Y. Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2. Nat. Geosci. 12, 833–838 (2019).

    Article  CAS  ADS  Google Scholar 

  15. Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. 7, 10284 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Gibbs, S. J., Shackleton, N. & Young, J. Orbitally forced climate signals in mid-Pliocene nannofossil assemblages. Mar. Micropaleontol. 51, 39–56 (2004).

    Article  ADS  Google Scholar 

  17. Beaufort, L. et al. Insolation cycles as a major control of equatorial Indian Ocean primary production. Science 278, 1451–1454 (1997).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Chepstow-Lusty, A., Backman, J. & Shackleton, N. J. Comparison of upper Pliocene Discoaster abundance variations from North Atlantic Sites 552, 607, 658, 659 and 662: further evidence for marine plankton responding to orbital forcing. Proc. ODP Sci. Results 108, 121–141 (1989).

  19. Thierstein, H. R., Geitzenauer, K. R., Molfino, B. & Shackleton, N. J. Global synchroneity of late Quaternary coccolith datum levels : validation by oxygen isotopes. Geology 5, 400–404 (1977).

    Article  CAS  ADS  Google Scholar 

  20. Bollmann, J., Baumann, K. H. & Thierstein, H. R. Global dominance of Gephyrocapsa coccoliths in the Late Pleistocene: selective dissolution, evolution, or global environmental change? Paleoceanography 13, 517–529 (1998).

    Article  ADS  Google Scholar 

  21. Raffi, I. et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137 (2006).

    Article  ADS  Google Scholar 

  22. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    ADS  Google Scholar 

  23. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  ADS  Google Scholar 

  24. Okada, H. & McIntyre, A. Seasonal distribution of modern Coccolithophorees in the western north Atlantic ocean. Mar. Biol. 54, 319–328 (1979).

    Article  Google Scholar 

  25. Longhurst, A. Ecological Geography of the Sea Vol. 1 (Academic Press, 1998).

  26. Sexton, P. F. & Barker, S. Onset of ‘Pacific-style’ deep-sea sedimentary carbonate cycles at the mid-Pleistocene transition. Earth Planet. Sci. Lett. 321–322, 81–94 (2012).

    Article  ADS  Google Scholar 

  27. Rickaby, R. E. M. et al. Coccolith chemistry reveals secular variations in the global ocean carbon cycle? Earth Planet. Sci. Lett. 253, 83–95 (2007).

    Article  CAS  ADS  Google Scholar 

  28. Wang, P., Tian, J. & Lourens, L. J. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records. Earth Planet. Sci. Lett. 290, 319–330 (2010).

    Article  CAS  ADS  Google Scholar 

  29. Suchéras-Marx, B. & Henderiks, J. Downsizing the pelagic carbonate factory: impacts of calcareous nannoplankton evolution on carbonate burial over the past 17 million years. Glob. Planet. Change 123, 97–109 (2014).

    Article  ADS  Google Scholar 

  30. Holligan, P. M. et al. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochem. Cycles 7, 879–900 (1993).

    Article  CAS  ADS  Google Scholar 

  31. Laepple, T. & Lohmann, G. Seasonal cycle as template for climate variability on astronomical timescales. Paleoceanography 24, PA4201 (2009).

    Article  ADS  Google Scholar 

  32. Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  33. Ruddiman, W. F., Raymo, M. & McIntyre, A. Matuyama 41,000-year cycles : North Atlantic Ocean and Northern hemisphere ice sheets. Earth Plan. Sci. Lett. 80, 117–129 (1986).

    Article  CAS  ADS  Google Scholar 

  34. Zeebe, R. E., Westerhold, T., Littler, K. & Zachos, J. C. Orbital forcing of the Paleocene and Eocene carbon cycle. Paleoceanography 32, 440–465 (2017).

    Article  ADS  Google Scholar 

  35. Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006).

    Article  PubMed  ADS  Google Scholar 

  36. Herbert, T. D. A long marine history of carbon cycle modulation by orbital-climatic changes. Proc. Natl Acad. Sci. USA 94, 8362–8369 (1997).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Ma, W., Tian, J., Li, Q. & Wang, P. Simulation of long eccentricity (400‐kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: weathering and nutrient response to orbital change. Geophys. Res. Lett. 38, L10701 (2011).

    Article  ADS  Google Scholar 

  38. Archer, D. & Maier-Reimer, E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263 (1994).

    Article  CAS  ADS  Google Scholar 

  39. Beaufort, L. Adaptation of the random settling method for quantitative studies of calcareous nannofossils. Micropaleontology 37, 415–418 (1992).

    Article  Google Scholar 

  40. Beaufort, L., Barbarin, N. & Gally, Y. Optical measurements to determine the thickness of calcite crystals and the mass of thin carbonate particles such as coccoliths. Nat. Protoc. 9, 633–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Beaufort, L. & Dollfus, D. Automatic recognition of coccolith by dynamical neural network. Mar. Micropaleont. 51, 57–73 (2004).

    Article  ADS  Google Scholar 

  42. Barbarin, N. La Reconnaissance Automatisée des Nannofossiles Calcaires du Cénozoique. PhD thesis, Aix-Marseille Univ. (2014).

  43. Beaufort, L. Weight estimates of coccoliths using the optical properties (birefringence) of calcite. Micropaleontology 51, 289–298 (2005).

    Article  Google Scholar 

  44. Dollfus, D. Reconaissance des Formes Naturelles par des Réseaux de Neurones Artificiels: Application au Nannoplancton Calcaire. PhD thesis, Aix-Marseille Univ. (1997).

  45. Dollfus, D. & Beaufort, L. Fat neural network for recognition of position-normalised objects. Neural Netw. 12, 553–560 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  MATH  Google Scholar 

  47. de Garidel-Thoron, T., Rosenthal, Y., Bassinot, F. C. & Beaufort, L. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years. Nature 433, 294–298 (2005).

    Article  PubMed  ADS  Google Scholar 

  48. Shackleton, N. J. & Al, E. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans. R. Soc. Edinb. Earth Sci. 81, 251–261 (1990).

    Article  Google Scholar 

  49. Carcaillet, J. T., Thouveny, N. & Bourlès, D. L. Geomagnetic moment instability between 0.6 and 1.3 Ma from cosmonuclide evidence. Geophys. Res. Lett. 30, 1792 (2003).

    Article  ADS  Google Scholar 

  50. Beaufort, L. & Party, S. S. MD148/PECTEN (Institut Polaire Francais, 2005).

  51. Tachikawa, K. et al. The precession phase of hydrological variability in the Western Pacific Warm Pool during the past 400 ka. Quat. Sci. Rev. 30, 3716–3727 (2011).

    Article  ADS  Google Scholar 

  52. Regoli, F. et al. Progressive shoaling of the equatorial Pacific thermocline over the last eight glacial periods. Paleoceanography 30, 439–455 (2015).

    Article  ADS  Google Scholar 

  53. Clemens, S. C. et al. Indian Monsoon Rainfall. International Ocean Discovery Program Preliminary Report 353 (IODP Publications, 2015).

  54. Clemens, S. C. et al. Site U1443. In Proc. International Ocean Discovery Program Vol. 353, https://doi.org/10.14379/iodp.proc.353.103.2016 (2016).

  55. Gebregiorgis, D. et al. Southern Hemisphere forcing of South Asian monsoon precipitation over the past ~1 million years. Nat. Commun. 9, 4702 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Gebregiorgis, D. et al. What can we learn from X-ray fluorescence core scanning data? A paleomonsoon case study. Geochem. Geophys. Geosyst. 21, e2019GC008414 (2020).

    Article  CAS  ADS  Google Scholar 

  57. McGrath, S. M., Clemens, S. C., Huang, Y. & Yamamoto, M. Greenhouse gas and ice volume drive Pleistocene Indian summer monsoon precipitation isotope variability. Geophys. Res. Lett. 48, e2020GL092249 (2021).

    Article  CAS  ADS  Google Scholar 

  58. Rosenthal, Y. et al. Site U1485. In Proc. International Ocean Discovery Program Vol. 363, https://doi.org/10.14379/iodp.proc.363.106.2018 (2018).

  59. Beaufort, L., Bassinot, F. C. & Vincent, E. in Reconstructing Ocean History : a Window into the Future (eds Abrantes, F. & Mix, A. C.) 245–272 (Kluwer Academic/Plenum Publisher, 1999).

  60. Young, J. R., P.R., Bown & J.A., Lees Nannotax3 http://www.mikrotax.org/Nannotax3 (2021).

  61. Perch-Nielsen, K. in Plankton Stratigraphy Vol. 1 (eds Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K.) (CUP Archive, 1989).

  62. Beaufort, L., Probert, I. & Buchet, N. Effects of acidification and primary production on coccolith weight: Implications for carbonate transfer from the surface to the deep ocean. Geochem. Geophy. Geosystems 8, Q08011 (2007).

    Article  ADS  Google Scholar 

  63. Lyle, M. Neogene carbonate burial in the Pacific Ocean. Paleoceanography 18, 1059 (2003).

    Article  ADS  Google Scholar 

  64. Paillard, D., Labeyrie, L. & Yiou, P. Macintosh program performs time-series analysis. Eos 77, 379 (1996).

    Article  ADS  Google Scholar 

  65. Li, M., Hinnov, L. & Kump, L. Acycle: time-series analysis software for paleoclimate research and education. Comput. Geosci. 127, 12–22 (2019).

    Article  CAS  ADS  Google Scholar 

  66. Blackman, R. B. & Tukey, J. W. The measurement of power spectra from the point of view of communications engineering—Part I. Bell Syst. Tech. J. 37, 185–282 (1958).

    Article  Google Scholar 

  67. Thomson, D. J. Spectrum estimation and harmonic analysis. In Proc. IEEE Vol. 70, 1055–1096 (1982).

  68. Bollmann, J. Morphology and biogeography of the Gephyrocapsa coccoliths in Holocene sediments. Mar. Micropaleontol. 29, 319–350 (1997).

    Article  ADS  Google Scholar 

  69. Hourdin, F. et al. Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim. Dyn. 40, 2167–2192 (2013).

    Article  Google Scholar 

  70. Krinner, G., Ciais, P., Viovy, N. & Friedlingstein, P. A simple parameterization of nitrogen limitation on primary productivity for global vegetation models. Biogeosciences Discuss. 2, 1243–1282 (2005).

    ADS  Google Scholar 

  71. Madec, G. & Nemo, T. NEMO Ocean Engine. Note du Pôle de modélisation de l’Institut Pierre‐Simon Laplace no. 27 (IPSL, 2015).

  72. Madec, G. NEMO Reference Manual, Ocean Dynamics Component: NEMO-OPA. Preliminary Version. Note du Pole de modélisation de l’Institut Pierre-Simon Laplace (IPSL, 2008).

  73. Fichefet, T. & Maqueda, M. M. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res. Oceans 102, 12609–12646 (1997).

    Article  ADS  Google Scholar 

  74. Valcke, S. et al. Coupling technologies for earth system modelling. Geosci. Model Dev. 5, 1589–1596 (2012).

    Article  ADS  Google Scholar 

  75. Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).

    Article  Google Scholar 

  76. Mayorga, E. et al. Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation. Environ. Modelling Softw. 25, 837–853 (2010).

    Article  Google Scholar 

  77. Bosmans, J. et al. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs. Quat. Sci. Rev. 188, 121–135 (2018).

    Article  ADS  Google Scholar 

  78. Braconnot, P. & Marti, O. Impact of precession on monsoon characteristics from coupled ocean atmosphere experiments: changes in Indian monsoon and Indian ocean climatology. Mar. Geol. 201, 23–34 (2003).

    Article  ADS  Google Scholar 

  79. Prescott, C., Haywood, A., Dolan, A., Hunter, S. & Tindall, J. Indian monsoon variability in response to orbital forcing during the late Pliocene. Glob. Planet. Change 173, 33–46 (2019).

    Article  ADS  Google Scholar 

  80. Erb, M. P. et al. Response of the equatorial pacific seasonal cycle to orbital forcing. J. Clim. 28, 9258–9276 (2015).

    Article  ADS  Google Scholar 

  81. Chen, M.-T. & Beaufort, L. Exploring quaternary variability of the east Asia monsoon, Kuroshio Current, and western Pacific warm pool systems: high-resolution investigations of paleoceanography from the IMAGES III (MD106) IPHIS cruise. Terr. Atmos. Ocean. Sci. 9, 129–142 (1998).

    Google Scholar 

  82. Gartner, S. Paleoceanography of the mid-Pleistocene. Mar. Micropaleontol. 13, 23–46 (1988).

    Article  ADS  Google Scholar 

  83. Pujos, A. & Giraudeau, J. Distribution of Noelaerhabdaceae (calcareous nannofossils) in the upper and middle Quaternary of the Atlantic and Pacific oceans. Oceanolog. Acta 16, 349–362 (1993).

    Google Scholar 

Download references

Acknowledgements

This paper is a contribution of the Climate research group at CEREGE. This research uses samples provided by the IODP. We thank the scientists, technical staff and crews of IODP expeditions 353 and 363 and IMAGES expeditions 3 and 13; A. Fruy and S. Sergi for sample preparation assistance; and the CEA–CCRT for providing access to the HPC resources of TGCC under the allocation 2019-A0070102212 made by GENCI. We acknowledge French ANR projects CALHIS (L.B.), iMonsoon (C.T.B.) and AMOR (Y.D.), and INSU project CALVE (C.T.B.) and FRB project COCCACE (L.B.) , which provided funding for this work. IODP France provided post-cruise funding to L.B. and C.T.B.

Author information

Authors and Affiliations

Authors

Contributions

L.B. designed the study. L.B., Y.G., N.B. and M.T. developed automated artificial intelligence methods. L.B., C.T.B., J.-C.M., P.C., E.G. and S.B. prepared samples and/or generated data. A.-C.S. designed and ran the model simulations, in collaboration with Y.D. L.B. and C.T.B. analysed the morphometric data. L.B., C.T.B., A.-C.S., B.S.-M., Y.D. and Y.R. discussed interpretations. L.B., C.T.B. and A.-C.S. wrote the manuscript with contributions from B.S.-M., Y.D. and Y.R.

Corresponding authors

Correspondence to Luc Beaufort or Clara T. Bolton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Claudia Agnini, Ying Guan, Rosalind Rickaby, Andy Ridgwell and Thomas Westerhold for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Size and MDI records for each core.

Top panels a to i: Size frequency plots for each individual core used to create the composite record shown in Fig. 1a. Bottom panels a to i: Individual MDI records for each core (black lines and points) plotted with the stacked MDI record (red line). Pearson correlation coefficients between individual sites and the stack vary between 0.71 and 0.93 (P values are all <0.00001).

Extended Data Fig. 2 Time-series analyses of individual records.

a, b, Blackman Tukey cross-spectral analysis between eccentricity and stacked coccolith length (a) and eccentricity and stacked MDI (b). Top: coherency; Bottom: phase (radian). ck, MTM and evolutive spectral analyses (see Methods) of detrended individual MDI series resampled at 2-kyr intervals (shown on left of each evolutive analysis). Primary orbital periods are shown by red lines.

Extended Data Fig. 3 Decomposition of the Noelaerhabdaceae mass accumulation rate (NoMAR) record into its mass and flux components.

a, Stacked NoMAR record, binned into 2-ky intervals (orange shading) and smoothed with a 30-kyr moving window (orange line), b, Noelaerhabdaceae coccolith flux (blue) and average Noelaerhabdaceae coccolith mass (red). Here, stacked mass and flux records are smoothed with a 30-kyr moving window as in a. c, NoMAR (orange) and MDI (purple) records, smoothed with a 30-kyr moving window. Grey shaded areas represent four described acmes of mid-size Noelaerhabdaceae species19,20,21,82,83.

Extended Data Fig. 4 Ocean–atmosphere model outputs under different orbital configurations.

Top: Yearly maximum contrast in NPP (gC m−2 day−1) for a: EminPmin, b: EmaxPmin and c: EmaxPmax. Low eccentricity values minimize the amplitude of precession variability, thus we only show results for minimum precession value at minimum eccentricity (EminPmin) but the reader can consider those results to be similar for the EminPmax simulation. d and e represent the anomaly of yearly maximum contrast in NPP. At EmaxPmax, the eastern equatorial Indian Ocean exhibits moderate seasonality (a) due to inhibition of the summer productivity induced by lower nutrient concentrations in this area (Extended Data Fig. 6a). In this case, high productivity areas during boreal summer are shifted to south-west of India. Bottom: Late summer (JASO) low-level winds for f: EminPmin, g: EmaxPmin, h: EmaxPmax simulations. i and j represent the anomaly in late summer low-level winds. At EmaxPmax the north-equatorial westerlies (c, e) are confined to south of 10° N owing to the extension above India of the low-pressure area.

Extended Data Fig. 5 Solar radiation and sea-level pressure in model simulations.

Seasonal latitudinal variations of solar radiation at the top of the atmosphere derived from the model (W.m−2); a: EminPmin, b: EmaxPmin, c: EmaxPmax. See Extended Data Table 3 for details of orbital configurations of each simulation. Late summer (JASO) low-level winds for d: EminPmin, e: EmaxPmin, f: EmaxPmax simulations and anomaly in late summer low-level winds, g: EmaxPmin minus EminPmin, h: EmaxPmax minus EminPmax.

Extended Data Fig. 6 Nutrients, temperature and upwelling in model simulations.

a, NO3 concentrations in the surface layer (0-100m). b, Upwelling velocity (averaged between 40 and 80m), c: Sea Surface Temperature (SST). All variables are averaged over JASO. Left: Emin, Middle: EmaxPmin minus EminPmin, Right: EmaxPmax minus EminPmax.

Extended Data Fig. 7 Explanation of non-linearities in coccolithophore evolution.

a, Low-pass filter design for the delay between first appearance datum (FAD) and the beginning of the acme (BA) for E. huxleyi (blue line, lag of two eccentricity cycles) and another possible scenario for another species (red line, lag of one eccentricity cycle). The stepped green line represents E. huxleyi’s existence (0 = absence, 1 = presence). The blue and red curves in all panels are the output series of the 2 low-pass filters described in the Methods. The black curve in a represents coeval eccentricity values. b, c, Bode plots of the 1-cycle lag filter (red) and the 2-cycle lag filter (blue) for magnitude (b) and phase (c) (see Methods). Earth’s primary orbital periods are indicated by shading.

Extended Data Table 1 Characteristics of the nine marine records used in this study
Extended Data Table 2 Relative calcium carbonate mass contribution per calcareous nannofossil taxon or group for each sediment core
Extended Data Table 3 Summary of orbital parameters23 used for each simulation and mean yearly contrast of radiation at equator (Wm−2) derived from IPSL-CM5A2

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaufort, L., Bolton, C.T., Sarr, AC. et al. Cyclic evolution of phytoplankton forced by changes in tropical seasonality. Nature 601, 79–84 (2022). https://doi.org/10.1038/s41586-021-04195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-04195-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing