Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Purine nucleoside phosphorylase as a target to treat age-associated lower urinary tract dysfunction

Abstract

The lower urinary tract (LUT), including the bladder, urethra and external striated muscle, becomes dysfunctional with age; consequently, many older individuals suffer from lower urinary tract disorders (LUTDs). By compromising urine storage and voiding, LUTDs degrade quality of life for millions of individuals worldwide. Treatments for LUTDs have been disappointing, frustrating both patients and their physicians; however, emerging evidence suggests that partial inhibition of the enzyme purine nucleoside phosphorylase (PNPase) with 8-aminoguanine (an endogenous PNPase inhibitor that moderately reduces PNPase activity) reverses age-associated defects in the LUT and restores the LUT to that of a younger state. Thus, 8-aminoguanine improves LUT biochemistry, structure and function by rebalancing the LUT purine metabolome, making 8-aminoguanine a novel potential treatment for LUTDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibition of PNPase with 8-aminoguanine ‘rebalances’ the purine metabolome and thereby restores ageing-associated abnormalities in LUT form and function.
Fig. 2: Ageing increases collagen fibre stiffness but this can be restored to a younger state with 8-aminoguanine treatment.

Similar content being viewed by others

References

  1. Gibson, W. & Wagg, A. Incontinence in the elderly, ‘normal’ ageing, or unaddressed pathology? Nat. Rev. Urol. 14, 440–447 (2017).

    Article  PubMed  Google Scholar 

  2. Pfisterer, M. H., Griffiths, D. J., Schaefer, W. & Resnick, N. M. The effect of age on lower urinary tract function: a study in women. J. Am. Geriatr. Soc. 54, 405–412 (2006).

    Article  PubMed  Google Scholar 

  3. Dubeau, C. E. The aging lower urinary tract. J. Urol. 175, S11–S15 (2006).

    Article  PubMed  Google Scholar 

  4. Chapple, C. R. et al. Lower urinary tract symptoms revisited: a broader clinical perspective. Eur. Urol. 54, 563–569 (2008).

    Article  PubMed  Google Scholar 

  5. McDonough, R. C. & Ryan, S. T. Diagnosis and management of lower urinary tract dysfunction. Surg. Clin. North Am. 96, 441–452 (2016).

    Article  PubMed  Google Scholar 

  6. Yoshimura, N. & Chancellor, M. B. Neurophysiology of lower urinary tract function and dysfunction. Rev. Urol. 5, S3–S10 (2003).

    PubMed  PubMed Central  Google Scholar 

  7. Jacobsen, S. J., Girman, C. J. & Lieber, M. M. Natural history of benign prostatic hyperplasia. Urology 58, 5–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Hansen, B. L. Lower urinary tract symptoms (LUTS) and sexual function in both sexes. Eur. Urol. 46, 229–334 (2004).

    Article  PubMed  Google Scholar 

  9. Azadzoi, K. M. & Siroky, M. B. Mechanisms of lower urinary tract symptoms in pelvic ischemia. J. Biochem. Pharmacol. Res. 1, 64–74 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Speich, J. E. et al. Are oxidative stress and ischemia significant causes of bladder damage leading to lower urinary tract dysfunction? Neurourol. Urodyn. 39, S16–S22 (2020).

    Article  PubMed  Google Scholar 

  11. Munro, D. & Treberg, J. R. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J. Exp. Biol. 220, 1170–1180 (2017).

    Article  PubMed  Google Scholar 

  12. Duchen, M. R. Mitochondria and calcium: from cell signaling to cell death. J. Physiol. 529, 57–68 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bayir, H. & Kagan, V. E. Bench to bedside: mitochondrial injury, oxidative stress and apoptosis. Crit. Care 12, 206 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cadenas, E. & Davies, K. J. Mitochondrial free radical generation, oxidative stress and aging. Free Rad. Biol. Med. 29, 222–230 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Effendi, W. I., Nagano, T., Kobayashi, K. & Nishimura, Y. Focusing on adenosine receptors as a potential targeted therapy in human diseases. Cells 9, 24 (2020).

    Article  Google Scholar 

  16. Jackson, E. K., Gillespie, D. G. & Mi, Z. 8-Aminoguanosine and 8-aminoguanine exert diuretic, natriuretic, glucosuric, and antihypertensive activity. J. Pharmacol. Exp. Ther. 359, 420–435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jackson, E. K. & Tofovic, S. P. Methods for treatment using small molecule potassium-sparing diuretics and natriuretics. US Patent No. 10,729,711 (2020).

  18. Osborne, W. R. & Barton, R. W. A rat model of purine nucleoside phosphorylase deficiency. Immunology 59, 63–67 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jackson, E. K. & Mi, Z. 8-Aminoguanosine exerts diuretic, natriuretic, and glucosuric activity via conversion to 8-aminoguanine, yet has direct antikaliuretic effects. J. Pharmacol. Exp. Ther. 363, 358–366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chern, J. W. et al. Nucleosides. 5. Synthesis of guanine and formycin B derivatives as potential inhibitors of purine nucleoside phosphorylase. J. Med. Chem. 36, 1024–1031 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Jackson, E. K., Mi, Z., Kleyman, T. R. & Cheng, D. 8-Aminoguanine induces diuresis, natriuresis, and glucosuria by inhibiting purine nucleoside phosphorylase and reduces potassium excretion by inhibiting Rac1. J. Am. Heart Assoc. 7, e010085 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shibata, S. et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat. Med. 14, 1370–1376 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Shibata, S. et al. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J. Clin. Invest. 121, 3233–3243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bzowska, A., Kulikowska, E. & Shugar, D. Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacol. Ther. 88, 349–425 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Roberts, E. L., Newton, R. P. & Axford, A. T. Plasma purine nucleoside phosphorylase in cancer patients. Clin. Chim. Acta 344, 109–114 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Silva, R. G. et al. Purine nucleoside phosphorylase activity in rat cerebrospinal fluid. Neurochem. Res. 29, 1831–1835 (2004).

    Article  PubMed  Google Scholar 

  27. Bortolotti, M., Polito, L., Battelli, M. G. & Bolognesi, A. Xanthine oxidoreductase: one enzyme for multiple physiological tasks. Redox Biol. 41, 101882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Snyder, F. F., Yuan, R. G., Bin, J. C., Carter, K. L. & McKay, D. J. Human guanine deaminase: cloning, expression and characterisation. Adv. Exp. Med. Biol. 486, 111–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Birder, L. A. et al. Purine nucleoside phosphorylase inhibition ameliorates age-associated lower urinary tract dysfunctions. JCI Insight 5, 15 (2020).

    Article  Google Scholar 

  30. Haskó, G., Sitkovsky, M. V. & Szabó, C. Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol. Sci. 25, 152–157 (2004).

    Article  PubMed  Google Scholar 

  31. Bhattacharyya, S. et al. Oral inosine persistently elevates plasma antioxidant capacity in Parkinson’s disease. Mov. Disord. 31, 417–421 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Cipriani, S., Bakshi, R. & Schwarzschild, M. A. Protection by inosine in a cellular model of Parkinson’s disease. Neuroscience 274, 242–249 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Gelain, D. P. et al. Extracellular inosine is modulated by H2O2 and protects Sertoli cells against lipoperoxidation and cellular injury. Free Radic. Res. 38, 37–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Gudkov, S. V., Shtarkman, I. N., Smirnova, V. S., Chernikov, A. V. & Bruskov, V. I. Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice. Radiat. Res. 165, 538–545 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Ruhal, P. & Dhingra, D. Inosine improves cognitive function and decreases aging-induced oxidative stress and neuroinflammation in aged female rats. Inflammopharmacology 26, 1317–1329 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Teixeira, F. C. et al. Inosine protects against impairment of memory induced by experimental model of Alzheimer disease: a nucleoside with multitarget brain actions. Psychopharmacology 237, 811–823 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Bellaver, B. et al. Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway. Purinergic Signal. 11, 571–580 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gerbatin, R. D. R. et al. Guanosine protects against traumatic brain injury-induced functional impairments and neuronal loss by modulating excitotoxicity, mitochondrial dysfunction, and inflammation. Mol. Neurobiol. 54, 7585–7596 (2017).

    Article  PubMed  Google Scholar 

  39. Hansel, G. et al. Guanosine protects against cortical focal ischemia. involvement of inflammatory response. Mol. Neurobiol. 52, 1791–1803 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Luo, Y. et al. Guanosine and uridine alleviate airway inflammation via inhibition of the MAPK and NF-kappaB signals in OVA-induced asthmatic mice. Pulm. Pharmacol. Ther. 69, 102049 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Zizzo, M. G. et al. Preventive effects of guanosine on intestinal inflammation in 2, 4-dinitrobenzene sulfonic acid (DNBS)-induced colitis in rats. Inflammopharmacology 27, 349–359 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Albrecht, P. et al. Extracellular cyclic GMP and its derivatives GMP and guanosine protect from oxidative glutamate toxicity. Neurochem. Int. 62, 610–619 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Dal-Cim, T. et al. Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J. Neurochem. 126, 437–450 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Dal-Cim, T. et al. Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3beta pathway. Neurochem. Int. 61, 397–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Li, D. W. et al. Guanosine exerts neuroprotective effects by reversing mitochondrial dysfunction in a cellular model of Parkinson’s disease. Int. J. Mol. Med. 34, 1358–1364 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Marques, N. F., Massari, C. M. & Tasca, C. I. Guanosine protects striatal slices against 6-OHDA-induced oxidative damage, mitochondrial dysfunction, and ATP depletion. Neurotox. Res. 35, 475–483 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Nonose, Y. et al. Guanosine enhances glutamate uptake and oxidation, preventing oxidative stress in mouse hippocampal slices submitted to high glutamate levels. Brain Res. 1748, 147080 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Paniz, L. G. et al. Neuroprotective effects of guanosine administration on behavioral, brain activity, neurochemical and redox parameters in a rat model of chronic hepatic encephalopathy. Metab. Brain Dis. 29, 645–654 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Petronilho, F. et al. Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behav. Immun. 26, 904–910 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Quincozes-Santos, A. et al. Guanosine protects C6 astroglial cells against azide-induced oxidative damage: a putative role of heme oxygenase 1. J. Neurochem. 130, 61–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Tarozzi, A. et al. Guanosine protects human neuroblastoma cells from oxidative stress and toxicity induced by amyloid-beta peptide oligomers. J. Biol. Regul. Homeost. Agents 24, 297–306 (2010).

    CAS  PubMed  Google Scholar 

  52. Thomaz, D. T. et al. Guanosine prevents nitroxidative stress and recovers mitochondrial membrane potential disruption in hippocampal slices subjected to oxygen/glucose deprivation. Purinergic Signal. 12, 707–718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dal-Cim, T. et al. Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A1 and A2A adenosine receptors and PI3K, MEK, and PKC pathways. Purinergic Signal. 15, 465–476 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Decker, H. et al. Guanosine and GMP increase the number of granular cerebellar neurons in culture: dependence on adenosine A2A and ionotropic glutamate receptors. Purinergic Signal. 15, 439–450 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nomiya, M., Andersson, K. E. & Yamaguchi, O. Chronic bladder ischemia and oxidative stress: new pharmacotherapeutic targets for lower urinary tract symptoms. Int. J. Urol. 22, 40–46 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Andersson, K. E., Fulhase, C., Soler, R. & Suimaraes-Souza, N. K. Update on uropharmacology: bladder dysfunction, nitric oxide, and reactive oxygen species. Curr. Bladder Dysfunct. Rep. 5, 150–156 (2010).

    Article  Google Scholar 

  57. Liu, F. et al. Protective effects of inosine on urinary bladder function in rats with partial bladder outlet obstruction. Urology 73, 1417–1422 (2009).

    Article  PubMed  Google Scholar 

  58. Chung, Y. G. et al. Inosine Improves neurogenic detrusor overactivity following spinal cord injury. PLoS One 10, e0141492 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen, P., Goldberg, D. E., Kolb, B., Lanser, M. & Benowitz, L. I. Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc. Natl Acad. Sci. USA 99, 9031–9036 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chang, R., Algird, A., Bau, C., Rathbone, M. P. & Jiang, S. Neuroprotective effects of guanosine on stroke models in vitro and in vivo. Neurosci. Lett. 431, 101–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Deng, G., Qiu, Z., Li, D., Fang, Y. & Zhang, S. Delayed administration of guanosine improves long-term functional recovery and enhances neurogenesis and angiogenesis in a mouse model of photothrombotic stroke. Mol. Med. Rep. 15, 3999–4004 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ramos, D. B. et al. Intranasal guanosine administration presents a wide therapeutic time window to reduce brain damage induced by permanent ischemia in rats. Purinergic Signal. 12, 149–159 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Rathbone, M. P. et al. Systemic administration of guanosine promotes functional and histological improvement following an ischemic stroke in rats. Brain Res. 1407, 79–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Kelly, K. J., Plotkin, Z. & Dagher, P. C. Guanosine supplementation reduces apoptosis and protects renal function in the setting of ischemic injury. J. Clin. Invest. 108, 1291–1298 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grunebaum, E., Cohen, A. & Roifman, C. M. Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr. Opin. Allergy Clin. Immunol. 13, 630–638 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Sasaki, Y. et al. Direct evidence of autosomal recessive inheritance of Arg24 to termination codon in purine nucleoside phosphorylase gene in a family with a severe combined immunodeficiency patient. Hum. Genet. 103, 81–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Grunebaum, E., Campbell, N., Leon-Ponte, M., Xu, X. & Chapdelaine, H. Partial purine nucleoside phosphorylase deficiency helps determine minimal activity required for immune and neurological development. Front. Immunol. 11, 1257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ohtani, N., Yamakoshi, K., Takahashi, A. & Hara, E. The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression. J. Med. Invest. 51, 146–153 (2004).

    Article  PubMed  Google Scholar 

  69. Childs, B. G., Durik, M., Baker, D. J. & vanDeursen, J. M. Cellular senescence in aging and age-related disease from mechanisms to therapy. Nat. Med. 21, 1424–1435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Birder, L. A. et al. A uro-protective agent with restorative actions on urethral and striated muscle morphology. World J. Urol. 39, 2685–2690 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Wickremaratchi, M. M. & Llewelyn, J. G. Effects of ageing on touch. Postgrad. Med. J. 82, 3910394 (2005).

    Google Scholar 

  73. Zalba, G. Oxidative stress in vascular pathophysiology: still much to learn. Antioxidants 10, 673 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Juan, Y. S. et al. Effect of ischemia/reperfusion on bladder nerve and detrusor cell damage. Int. Urol. Nephrol. 41, 513–521 (2009).

    Article  PubMed  Google Scholar 

  75. Pinggera, G. M. et al. Association of lower urinary tract symptoms and chronic ischaemia of the lower urinary tract in elderly women and men: assessment using colour Doppler ultrasonography. BJU Int. 102, 470–474 (2008).

    Article  PubMed  Google Scholar 

  76. Monk, B. A. & George, S. J. The effect of ageing on vascular smooth muscle cell behavior. Gerontology 61, 416–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Cheng, F. et al. Layer dependent role of collagen recruitment during loading of the rat bladder wall. Biomech. Model. Mechanobiol. 17, 403–417 (2018).

    Article  PubMed  Google Scholar 

  78. Tuttle, T. G., Lujan, H. L., Tykocki, N. R., DiCarlo, S. E. & Roccablanca, S. Remodeling of extracellular matrix in the urinary bladder of paraplegic rats results in increased compliance and delayed fiber recruitment 16 weeks after spinal cord injury. Acta Biomater. 141, 280–289 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Sebastian, D. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J. 35, 1677–1682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Frank, S., Gaume, B. & Bergmann-Leitner, E. W. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Rub, C., Wilkening, A. & Voos, W. Mitochondrial quality control by the Pink1/Parkin system. Cell Tissue Res. 367, 111–123 (2017).

    Article  PubMed  Google Scholar 

  82. Porter, A. G. & Janicke, R. U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6, 99–110 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Chaitanya, G., Alexander, J. S. & Babu, P. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun. Signal. 8, 31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to discussion of the content, writing, reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Lori A. Birder.

Ethics declarations

Competing interests

Both authors are co-inventors on a (pending) patent, PCT/US2020/022697, which relates to the field of purine nucleoside phosphorylase (PNPase) inhibitors and PNPase purine nucleoside substrates for treating bladder and urethra dysfunction or disease.

Peer review

Peer review information

Nature Reviews Urology thanks Timothy Boone, Russ Chess-Williams, Kylie Mills and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birder, L.A., Jackson, E.K. Purine nucleoside phosphorylase as a target to treat age-associated lower urinary tract dysfunction. Nat Rev Urol 19, 681–687 (2022). https://doi.org/10.1038/s41585-022-00642-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-022-00642-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing