Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Moving towards a systems-based classification of innate immune-mediated diseases

Abstract

Autoinflammation as a distinct disease category was first reported in 1999 as a group of monogenic disorders characterized by recurrent episodes of systemic and organ-specific inflammation, known as periodic fever syndromes. Since this original description, the focus has shifted considerably to the inclusion of complex multifactorial conditions with an autoinflammatory basis. Furthermore, the boundaries of what are considered to be autoinflammatory disorders are constantly evolving and currently encompass elements of immunodeficiency and autoimmunity. Notable developments in the intervening 20 years include substantial progress in understanding how the different inflammasomes are activated, how infection is sensed by the innate immune system and how intracellular signalling systems are consequently activated and integrated with many different cellular functions in the autoinflammatory process. With these developments, the field of autoinflammation is moving from a gene-centric view of innate immune-mediated disease towards a systems-based concept, which describes how various convergent pathways, including pyrin and the actin cytoskeleton, protein misfolding and cellular stress, NF-κB dysregulation and interferon activation, contribute to the autoinflammatory process. The development and adoption of a systems-based concept of systemic autoinflammatory diseases is anticipated to have implications for the development of treatments that target specific components of the innate immune system.

Key points

  • The definition of autoinflammatory disease has evolved since its original description, with increasing awareness of the influence of various processes in the pathogenesis, including metabolism, cytoskeletal perturbation and infection.

  • The scope of what is considered autoinflammation is widening and now includes not only monogenic periodic fever syndromes but also polygenic conditions and disorders with autoimmune and immunodeficiency components.

  • Gene-centric classifications of disease have often been quite restrictive, and a move towards systems-based classifications would be beneficial in the investigation and management of these disorders.

  • Many autoinflammatory disorders arise, either partly or fully, because of ‘collateral damage’ caused by the innate immune system striving to maintain cellular homeostasis, such as in pyrin-linked cytoskeletal imbalance.

  • Appreciation of the complex overlap between the manifold systems related to autoinflammation, autoimmunity and immunodeficiency can enable the exploration of therapeutic interventions that were not previously considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pyrin and the cytoskeleton in systemic autoinflammatory diseases.
Fig. 2: The unfolded protein response.
Fig. 3: Defects in NF-κB pathway-related genes.
Fig. 4: The interferon pathway.
Fig. 5: The autoinflammatory disease landscape.
Fig. 6: The overlapping therapeutic options in autoinflammatory disease.

Similar content being viewed by others

References

  1. Pathak, S., McDermott, M. F. & Savic, S. Autoinflammatory diseases: update on classification diagnosis and management. J. Clin. Pathol. 70, 1–8 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Beck, D. & Aksentijevich, I. J. F. Biochemistry of autoinflammatory diseases: catalyzing monogenic disease. Front. Immunol. 10, 101 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. The International FMF Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90, 797–807 (1997).

    Article  Google Scholar 

  4. French FMF Consortium et al. A candidate gene for familial Mediterranean fever. Nat. Genet. 17, 25–31 (1997).

    Article  Google Scholar 

  5. Masters, S. L. et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci. Transl Med. 8, 332–345 (2016).

    Article  CAS  Google Scholar 

  6. De Benedetti, F. et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N. Engl. J. Med. 378, 1908–1919 (2018).

    Article  PubMed  Google Scholar 

  7. Moghaddas, F. et al. A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to familial Mediterranean fever. Ann. Rheum. Dis. 76, 2085–2094 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. McGonagle, D. & McDermott, M. F. A proposed classification of the immunological diseases. PLoS Med. 3, e297 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ben-Chetrit, E. et al. Consensus proposal for taxonomy and definition of the autoinflammatory diseases (AIDs): a Delphi study. Ann. Rheum. Dis. 77, 1558–1565 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. McGonagle, D., Watad, A. & Savic, S. J. Novel immunological based classification of rheumatoid arthritis with therapeutic implications. Autoimmun. Rev. 11, 1115–1123 (2018).

    Article  CAS  Google Scholar 

  11. Ozen, S. & Bilginer, Y. A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat. Rev. Rheumatol. 10, 135–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome. Nature 513, 237–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Park, Y. H. et al. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17, 914–921 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hong, Y. et al. Autoinflammation due to homozygous S208 MEFV mutation. Ann. Rheum. Dis. 78, 571–573 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Gao, W. et al. Site-specific phosphorylation and microtubule dynamics control pyrin inflammasome activation. Proc. Natl Acad. Sci. USA 113, 4857–4866 (2016).

    Article  CAS  Google Scholar 

  16. Van Gorp, H. et al. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in pyrin inflammasome activation. Proc. Natl Acad. Sci. USA 113, 14384–14389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jamilloux, Y. et al. Familial Mediterranean fever mutations are hypermorphic mutations that specifically decrease the activation threshold of the pyrin inflammasome. Rheumatology 57, 100–111 (2017).

    Article  CAS  Google Scholar 

  18. Drenth, J. P. et al. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. International Hyper-IgD Study Group. Nat. Genet. 22, 178–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Houten, S. M. et al. Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat. Genet. 22, 175–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Seabra, M. Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal. 10, 167–172 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Ozen, S. et al. International retrospective chart review of treatment patterns in severe familial Mediterranean fever, tumor necrosis factor receptor-associated periodic syndrome, and mevalonate kinase deficiency/hyperimmunoglobulinemia D syndrome. Arthritis Care Res. 69, 578–586 (2017).

    Article  CAS  Google Scholar 

  22. ter Haar, N. M. et al. The phenotype and genotype of mevalonate kinase deficiency: a series of 114 cases from the Eurofever registry. Arthritis Rheum. 68, 2795–2805 (2016).

    Article  CAS  Google Scholar 

  23. Lachmann, H. J. Periodic fever syndromes. Best Pract. Res. Clin. Rheumatol. 31, 596–609 (2017).

    Article  PubMed  Google Scholar 

  24. Waite, A. L. et al. Pyrin modulates the intracellular distribution of PSTPIP1. PLoS One 4, 6147 (2009).

    Article  CAS  Google Scholar 

  25. Waite, A. L. et al. Pyrin and ASC co-localize to cellular sites that are rich in polymerizing actin. Exp. Biol. Med. 234, 40–52 (2009).

    Article  CAS  Google Scholar 

  26. Manukyan, G. et al. Activated phenotype of circulating neutrophils in familial Mediterranean fever. Immunobiology 218, 892–898 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Vicente-Manzanares, M. & Sanchez-Madrid, F. Role of the cytoskeleton during leukocyte responses. Nat. Rev. Immunol. 4, 110–122 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Alghamdi, M. Familial Mediterranean fever, review of the literature. Clin. Rheumatol. 36, 1707–1713 (2017).

    Article  PubMed  Google Scholar 

  29. Wise, C. A. et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum. Mol. Genet. 11, 961–969 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Yeon, H. B. et al. Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome maps to chromosome 15q. Am. J. Hum. Genet. 66, 1443–1448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Starnes, T. W. et al. The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages. Blood 123, 2703–2714 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shoham, N. G. et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc. Natl Acad. Sci. USA 100, 13501–13506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pfajfer, L. et al. Mutations affecting the actin regulator WD repeat-containing protein 1 lead to aberrant lymphoid immunity. J. Allergy Clin. Immunol. 142, 1589–1604 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Kim, M. L. et al. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β. J. Exp. Med. 212, 927–938 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Volpi, S. et al. A combined immunodeficiency with severe infections, inflammation, and allergy caused by ARPC1B deficiency. J. Allergy Clin. Immunol. 143, 2296–2299 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee, P. P. et al. Wiskott–Aldrich syndrome protein regulates autophagy and inflammasome activity in innate immune cells. Nat. Commun. 8, 1576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Poli, M. C. et al. Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome. Am. J. Hum. Genet. 102, 1126–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fricke, B. et al. The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep. 8, 1170–1175 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chakraborty, P. K. et al. Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124, 2867–2871 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wiseman, D. H. et al. A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood 122, 112–123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giannelou, A. et al. Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors. Ann. Rheum. Dis. 77, 612–619 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Dickie, L. J. et al. Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. Ann. Rheum. Dis. 71, 2035–2043 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Scambler, T. et al. ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in cystic fibrosis. eLife 8, e49248 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Agyemang, A. F. et al. Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond. Semin. Immunopathol. 37, 335–347 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Cherubini, M. & Wade-Martins, R. Convergent pathways in Parkinson’s disease. Cell Tissue Res. 373, 79–90 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Lenart, N., Brough, D. & Denes, A. Inflammasomes link vascular disease with neuroinflammation and brain disorders. J. Cereb. Blood Flow Metab. 36, 1668–1685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sen, R. & Baltimore, D. J. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705–716 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Sen, R. & Baltimore, D. J. C. Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47, 921–928 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Mussbacher, M. et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front. Immunol. 10, 85 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tak, P. P. & Firestein, G. S. NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7–11 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lawrence, T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 1, a001651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Croston, G. E., Cao, Z. & Goeddel, D. V. NF-κB activation by interleukin-1 (IL-1) requires an IL-1 receptor-associated protein kinase activity. J. Biol. Chem. 270, 16514–16517 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Rea, I. M. et al. Age and age-related diseases: role of inflammation triggers and cytokines. Front. Immunol. 9, 586 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Beg, A. A. & Baldwin, A. S. Activation of multiple NF-κB/Rel DNA-binding complexes by tumor necrosis factor. Oncogene 9, 1487–1492 (1994).

    CAS  PubMed  Google Scholar 

  55. Newton, K. & Dixit, V. M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol. 4, 3 (2012).

    Article  CAS  Google Scholar 

  56. Kabe, Y. et al. Redox regulation of NF-κB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid. Redox Signal. 7, 395–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Devary, Y. et al. NF-κB activation by ultraviolet light not dependent on a nuclear signal. Science 261, 1442–1445 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Jarosz-Griffiths, H. H. et al. TNF receptor signalling in autoinflammatory diseases. Int. Immunol. 31, 639–648 (2019).

    Article  PubMed  Google Scholar 

  59. Hayden, M. S. & Ghosh, S. Regulation of NF-κB by TNF family cytokines. Semin. Immunol. 26, 253–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zonana, J. et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am. J. Hum. Genet. 67, 1555–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Israel, A. The IKK complex, a central regulator of NF-κB activation. Cold Spring Harb. Perspect. Biol. 2, 1–14 (2010).

    Article  CAS  Google Scholar 

  62. Jin, D. Y. & Jeang, K. T. Isolation of full-length cDNA and chromosomal localization of human NF-κB modulator NEMO to Xq28. J. Biomed. Sci. 6, 115–120 (1999).

    CAS  PubMed  Google Scholar 

  63. Kere, J. et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat. Genet. 13, 409–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Courtois, G. et al. A hypermorphic IκBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J. Clin. Invest. 112, 1108–1115 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Orange, J. S. & Geha, R. S. Finding NEMO: genetic disorders of NF-κB activation. J. Clin. Invest. 112, 983–985 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Vlantis, K. et al. NEMO prevents RIP kinase 1-mediated epithelial cell death and chronic intestinal inflammation by NF-κB-dependent and -independent functions. Immunity 44, 553–567 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Cuchet-Lourenco, D. et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361, 810–813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ikeda, F. et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471, 637–641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aksentijevich, I. & Zhou, Q. NF-κB pathway in autoinflammatory diseases: dysregulation of protein modifications by ubiquitin defines a new category of autoinflammatory diseases. Front. Immunol. 8, 399 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou, Q. et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc. Natl Acad. Sci. USA 113, 10127–10132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Damgaard, R. B. et al. OTULIN deficiency in ORAS causes cell type-specific LUBAC degradation, dysregulated TNF signalling and cell death. EMBO Mol. Med. 11, 3 (2019).

    Article  CAS  Google Scholar 

  77. Aksentijevich, I. & McDermott, M. F. Lessons from characterization and treatment of the autoinflammatory syndromes. Curr. Opin. Rheumatol. 29, 187–194 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhou, Q. et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48, 67–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Shembade, N. & Harhaj, E. W. Regulation of NF-κB signaling by the A20 deubiquitinase. Cell. Mol. Immunol. 9, 123–130 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, Y. et al. Ubiquitination regulation of inflammatory responses through NF-κB pathway. Am. J. Transl Res. 10, 881–891 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Aeschlimann, F. A. et al. A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-κB-mediated autoinflammatory disease. Ann. Rheum. Dis. 77, 728–735 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Lawless, D. et al. A case of adult-onset Still’s disease caused by a novel splicing mutation in TNFAIP3 successfully treated with tocilizumab. Front. Immunol. 9, 1527 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Badran, Y. R. et al. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J. Exp. Med. 214, 1937–1947 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Faruqi, A. J. et al. RELA/p65 haploinsufficiency as a novel cause of primary immune disorder. J. Immunol. 198, 59.17 (2017).

    Google Scholar 

  85. Liu, T. et al. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2, 17023 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kaustio, M. et al. Damaging heterozygous mutations in NFKB1 lead to diverse immunologic phenotypes. J. Allergy Clin. Immunol. 140, 782–796 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Alnemri, E. S. Sensing cytoplasmic danger signals by the inflammasome. J. Clin. Immunol. 30, 512–519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Uggenti, C., Lepelley, A. & Crow, Y. J. Self-awareness: nucleic acid-driven inflammation and the type I interferonopathies. Ann. Rev. Immunol. 37, 247–267 (2019).

    Article  CAS  Google Scholar 

  89. Sanchez, G. A. M. et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J. Clin. Invest. 128, 3041–3052 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Briand, C. et al. Efficacy of JAK1/2 inhibition in the treatment of chilblain lupus due to TREX1 deficiency. Ann. Rheum. Dis. 78, 431–433 (2019).

    Article  PubMed  Google Scholar 

  91. McLellan, K. E. et al. JAK 1/2 blockade in MDA5 gain-of-function. J. Clin. Immunol. 38, 844–846 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 1548–1550 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hjelmervik, T. O. R. et al. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 52, 1534–1544 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Higgs, B. W. et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann. Rheum. Dis. 70, 2029–2036 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. van der Pouw Kraan, T. C. et al. Rheumatoid arthritis subtypes identified by genomic profiling of peripheral blood cells: assignment of a type I interferon signature in a subpopulation of patients. Ann. Rheum. Dis. 66, 1008–1014 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rigolet, M. et al. Distinct interferon signatures stratify inflammatory and dysimmune myopathies. Rheum. Musculoskelet. Dis. 5, e000811 (2019).

    Google Scholar 

  98. Li, T. & Chen, Z. J. The cGAS–cGAMP–STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215, 1287–1299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science 363, eaat8657 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Luksch, H. et al. STING-associated lung disease in mice relies on T cells but not type I interferon. J. Allergy Clin. Immunol. 144, 254–266 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Warner, J. D. et al. STING-associated vasculopathy develops independently of IRF3 in mice. J. Exp. Med. 214, 3279–3292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sivick, K. E. et al. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Cerboni, S. et al. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. J. Exp. Med. 214, 1769–1785 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Srikanth, S. et al. The Ca2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum. Nat. Immunol. 20, 152–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rice, L. et al. A report of novel STIM1 deficiency and 6 year follow up of two previous cases associated with mild immunological phenotype. J. Clin. Immunol. 3, 249–256 (2018).

    Google Scholar 

  107. Feske, S., Picard, C. & Fischer, A. Immunodeficiency due to mutations in ORAI1 and STIM1. Clin. Immunol. 135, 169–182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124, 5516–5520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Konno, H. et al. Pro-inflammation associated with a gain-of-function mutation (R284S) in the innate immune sensor STING. Cell Rep. 23, 1112–1123 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Saldanha, R. G. et al. A mutation outside the dimerization domain causing atypical STING-associated vasculopathy with onset in infancy. Front. Immunol. 9, 1535 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Arakelyan, A. et al. Autoimmunity and autoinflammation: a systems view on signaling pathway dysregulation profiles. PLoS One 12, 1–21 (2017).

    Article  CAS  Google Scholar 

  112. Grateau, G. et al. How should we approach classification of autoinflammatory diseases? Nat. Rev. Rheumatol. 9, 624–629 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Savic, S. & McDermott, M. F. Clinical genetics in 2014: new monogenic diseases span the immunological disease continuum. Nat. Rev. Rheumatol. 11, 67–68 (2015).

    Article  PubMed  Google Scholar 

  114. Savic, S., Dickie, L. J., Wittmann, M. & McDermott, M. F. Autoinflammatory syndromes and cellular responses to stress: pathophysiology, diagnosis and new treatment perspectives. Best Pract. Res. Clin. Rheumatol. 26, 505–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Dennis, G. Jr et al. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res. Ther. 16, R90 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liston, A. & Masters, S. L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol. 17, 208–214 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Yan, M. H., Wang, X. & Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 62, 90–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. O’Neill, L. & Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19, 273–281 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Lara-Reyna, S. et al. Metabolic reprogramming of cystic fibrosis macrophages via the IRE1a arm of the unfolded protein response results in exacerbated inflammation. Front. Immunol. 10, 1789 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lukens, J. R. et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516, 246–249 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fishman, J. & Thomson, A. Clinical implications of basic science discoveries: immune homeostasis and the microbiome—dietary and therapeutic modulation and implications for transplantation. Am. J. Transplant. 15, 1755–1758 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. McDermott, M. F. et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. McDermott, M. F. & Aksentijevich, I. The autoinflammatory syndromes. Curr. Opin. Allergy Clin. Immunol. 2, 511–516 (2002).

    Article  PubMed  Google Scholar 

  126. Sarrauste de Menthière, C. et al. INFEVERS: the registry for FMF and hereditary inflammatory disorders mutations. Nucleic Acids Res. 31, 282–285 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tang, D. et al. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158–175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Takeuchi, O. & Akira, S. J. C. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Martinon, F. et al. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Lamkanfi, M. & Dixit, V. M. Inflammasomes and their roles in health and disease. Annu. Rev. Cell Dev. Biol. 28, 137–161 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Strowig, T. et al. Inflammasomes in health and disease. Nature 481, 278–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Vanaja, S. K. et al. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 25, 308–315 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sutterwala, F. S. et al. Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci. 1319, 82–95 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mangan, M. S. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug Discov. 17, 588–606 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Nakamura, S. et al. Identification of baseline gene expression signatures predicting therapeutic responses to three biologic agents in rheumatoid arthritis: a retrospective observational study. Arthritis Res. Ther. 18, 159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tasaki, S. et al. Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission. Nat. Commun. 9, 2755 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Konttinen, Y. et al. Osteoarthritis as an autoinflammatory disease caused by chondrocyte-mediated inflammatory responses. Arthritis Rheum. 64, 613–616 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartil. 21, 16–21 (2013).

    Article  CAS  Google Scholar 

  139. Gilbert, S. J. & Blain, E. J. in Mechanobiology in Health and Disease (ed. Verbruggen, S.) 99–126 (Elsevier, 2018).

  140. Kalaitzoglou, E. et al. Innate immune responses and osteoarthritis. Curr. Rheumatol. Rep. 19, 45 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Nefla, M. et al. The danger from within: alarmins in arthritis. Nat. Rev. Rheumatol. 12, 669–683 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Geyer, M. & Schönfeld, C. Novel insights into the pathogenesis of osteoarthritis. Curr. Rheumatol. Rev. 14, 98–107 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Rigante, D., Vitale, A., Lucherini, O. M. & Cantarini, L. The hereditary autoinflammatory disorders uncovered. Autoimmun. Rev. 13, 892–900 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Berteau, F. et al. Autosomic dominant familial Behçet disease and haploinsufficiency A20: a review of the literature. Autoimmun. Rev. 17, 809–815 (2018).

    Article  PubMed  Google Scholar 

  145. Cowen, E. W. & Goldbach-Mansky, R. DIRA, DITRA, and new insights into pathways of skin inflammation: what’s in a name? Arch. Dermatol. 148, 381–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rossi-Semerano, L. et al. First clinical description of an infant with interleukin-36-receptor antagonist deficiency successfully treated with anakinra. Pediatrics 132, 1043–1047 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are supported by the EU Horizon 2020 research and innovation programme (ImmunAID; grant agreement number 779295). The authors thank T. Scambler, F. Berenbaum and S. Lara-Reyna for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Sinisa Savic or Michael F. McDermott.

Ethics declarations

Competing interests

S.S. declares that he has received a travel grant and honoraria from SOBI and Novartis. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks I. Touitou, M. Gattorno, T. Vogel and S. Masters for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pattern recognition receptor

A protein that recognizes conserved molecular structures either found in pathogens, such as bacteria and viruses (pathogen-associated molecular patterns), or released by damaged cells (damage-associated molecular patterns).

Filamentous actin

(F-actin). Actin is the most abundant protein in eukaryotic cells and can be present in either a linear polymeric form or as filamentous actin.

Autophagy

A highly regulated process of ‘self-eating’ whereby cell organelles and their contents can be repurposed for other uses.

Hypomorphic mutations

Types of mutation that cause a partial loss of gene function or in which the wild-type gene product is expressed at a reduced level.

Anhidrotic ectodermal dysplasia

A form of ectodermal dysplasia characterized by abnormal development of ectodermal tissues including the skin, hair, teeth and sweat glands, resulting in an inability to sweat (anhidrosis).

Stop-gain variant

A mutation resulting in a premature termination codon (that is, a stop was gained), which signals the end of translation and results in a shortened protein product.

Itaconate

A derivate of the tricarboxylic acid cycle, which has a key role in the regulation of macrophage function; it has been shown to decrease production of pro-inflammatory mediators in lipopolysaccharide-treated macrophages and to ameliorate sepsis and psoriasis in animal models, revealing a novel biological action beyond its regular roles in antimicrobial defences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savic, S., Caseley, E.A. & McDermott, M.F. Moving towards a systems-based classification of innate immune-mediated diseases. Nat Rev Rheumatol 16, 222–237 (2020). https://doi.org/10.1038/s41584-020-0377-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0377-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing