Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurobehavioural comorbidities of epilepsy: towards a network-based precision taxonomy

Subjects

Abstract

Cognitive and behavioural comorbidities are prevalent in childhood and adult epilepsies and impose a substantial human and economic burden. Over the past century, the classic approach to understanding the aetiology and course of these comorbidities has been through the prism of the medical taxonomy of epilepsy, including its causes, course, characteristics and syndromes. Although this ‘lesion model’ has long served as the organizing paradigm for the field, substantial challenges to this model have accumulated from diverse sources, including neuroimaging, neuropathology, neuropsychology and network science. Advances in patient stratification and phenotyping point towards a new taxonomy for the cognitive and behavioural comorbidities of epilepsy, which reflects the heterogeneity of their clinical presentation and raises the possibility of a precision medicine approach. As we discuss in this Review, these advances are informing the development of a revised aetiological paradigm that incorporates sophisticated neurobiological measures, genomics, comorbid disease, diversity and adversity, and resilience factors. We describe modifiable risk factors that could guide early identification, treatment and, ultimately, prevention of cognitive and broader neurobehavioural comorbidities in epilepsy and propose a road map to guide future research.

Key points

  • The cognitive and behavioural complications of the epilepsies have traditionally been examined in relation to the core characteristics of the disorder, such as the epilepsy syndrome, its aetiology, the frequency and severity of seizures, and treatments.

  • This ‘lesion model’ has been the predominant paradigm for more than 100 years; however, substantial evidence of patient heterogeneity from cognitive, behavioural, neuroimaging, neuropathological, network science and clinical studies is inconsistent with this model.

  • A precision approach to epilepsy neurobehavioural comorbidities requires an understanding of this natural heterogeneity, which could be aided by a new taxonomy based on cognitive and behavioural phenotyping.

  • This Review surveys the literature that has identified cognitive and behavioural phenotypes in children and adults with epilepsy and provides a synopsis of the evolving taxonomy.

  • A new and expanded paradigm is proposed, which includes sophisticated neurobiological measures, genomics, comorbid medical disease, diversity and adversity, and resilience factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classic paradigm of neurobehavioural comorbidities of epilepsy.
Fig. 2: Subcortical, cortical and diffusion findings in ENIGMA-Epilepsy.
Fig. 3: Cognitive phenotypes and their distribution.
Fig. 4: Diffusion and network findings across discrete cognitive phenotypes of TLE.
Fig. 5: Next-generation paradigm for neurobehavioural phenotypes of epilepsy.

Similar content being viewed by others

References

  1. England, M. J., Liverman, C. T., Schultz, A. M. & Strawbridge, L. M. Epilepsy across the spectrum: promoting health and understanding. A summary of the Institute of Medicine report. Epilepsy Behav. 25, 266–276 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization. Epilepsy: a public health imperative (WHO, 2019).

  3. Venne, J. et al. International Consortium for Personalized Medicine: an international survey about the future of personalized medicine. Per Med. 17, 89–100 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Jameson, J. L. & Longo, D. L. Precision medicine — personalized, problematic, and promising. N. Engl. J. Med. 372, 2229–2234 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Williams, J. R. et al. Current applications of precision medicine: a bibliometric analysis. Per Med. 16, 351–359 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Strzelczyk, A., Klein, K. M. & von Podewils, F. Editorial: Burden of illness in people with epilepsy: from population-based studies to precision medicine. Front. Neurol. 9, 1164 (2018).

    Article  PubMed  Google Scholar 

  7. Kearney, H., Byrne, S., Cavalleri, G. L. & Delanty, N. Tackling epilepsy with high-definition precision medicine: a review. JAMA Neurol. 76, 1109–1116 (2019).

    Article  PubMed  Google Scholar 

  8. EpiPM Consortium. A roadmap for precision medicine in the epilepsies. Lancet Neurol. 14, 1219–1228 (2015).

    Article  PubMed Central  Google Scholar 

  9. Josephson, C. B. & Wiebe, S. Precision medicine: academic dreaming or clinical reality? Epilepsia 62, S78–S89 (2020).

    PubMed  Google Scholar 

  10. Josephson, C. B. et al. Psychosocial profiles and their predictors using patient-reported outcomes and machine learning. Epilepsia 61, 1201–1210 (2020).

    Article  PubMed  Google Scholar 

  11. Nickels, K. C., Zaccariello, M. J., Hamiwka, L. D. & Wirrell, E. C. Cognitive and neurodevelopmental comorbidities in paediatric epilepsy. Nat. Rev. Neurol. 12, 465–476 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Loring, D. W. History of neuropsychology through epilepsy eyes. Arch. Clin. Neuropsychol. 25, 259–273 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wallin, J. E. W. Eight months of psycho-clinical research at the New Jersey State Village for Epileptics, with some results from the Binet–Simon testing. Epilepsia A3, 366–380 (1912).

    Article  Google Scholar 

  14. Fox, J. T. The response of epileptic children to mental and educational tests. Br. J. Med. Psychol. 4, 235–248 (1924).

    Article  Google Scholar 

  15. Collins, A. L., Atwell, C. R. & Moore, M. Stanford–Binet response patterns in epileptics. Am. J. Orthopsychiatry 8, 51–63 (1938).

    Article  Google Scholar 

  16. Hermann, B. Intelligence and epilepsy: the early era. Epilepsy Behav. 101, 106597 (2019).

    Article  PubMed  Google Scholar 

  17. Jarčušková, D., Palušná, M., Gazda, J., Feketeová, E. & Gdovinová, Z. Which clinical and neuropsychological factors are responsible for cognitive impairment in patients with epilepsy? Int. J. Public. Health 65, 947–956 (2020).

    Article  PubMed  Google Scholar 

  18. Gavrilovic, A. et al. Impact of epilepsy duration, seizure control and EEG abnormalities on cognitive impairment in drug-resistant epilepsy patients. Acta Neurol. Belg. 119, 403–410 (2019).

    Article  PubMed  Google Scholar 

  19. Harrower-Erickson, M. in Epilepsy and Cerebral Localization: A Study of the Mechanism, Treatment and Prevention of Epileptic Seizures (eds Penfield, W. & Erickson, T. C.) 546–574 (Thomas, C. C., 1941).

  20. Collins, A. L. Epileptic intelligence. J. Consult. Psychol. 15, 392–399 (1951).

    Article  CAS  PubMed  Google Scholar 

  21. Lennox, W. in Epilepsy and Related Disorders (eds Lennox, W. G. & Lennox-Buchthal, M. A.) 659–699 (Little, Brown & Company, 1960).

  22. Tarter, R. E. Intellectual and adaptive functioning in epilepsy. A review of 50 years of research. Dis. Nerv. Syst. 33, 763–770 (1972).

    CAS  PubMed  Google Scholar 

  23. Brown, S. W. & Reynolds, E. H. in Epilepsy and Psychiatry (eds Reynolds, E. H. & Trimble, M. R.) 147–164 (Churchill Livingstone, 1981).

  24. Dodrill, C. B. & Matthews, C. G. The role of neuropsychology in the assessment and treatment of persons with epilepsy. Am. Psychol. 47, 1139–1142 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Elger, C. E., Helmstaedter, C. & Kurthen, M. Chronic epilepsy and cognition. Lancet Neurol. 3, 663–672 (2004).

    Article  PubMed  Google Scholar 

  26. Baxendale, S. & Thompson, P. The new approach to epilepsy classification: cognition and behavior in adult epilepsy syndromes. Epilepsy Behav. 64, 253–256 (2016).

    Article  PubMed  Google Scholar 

  27. Ratcliffe, C. et al. Cognitive function in genetic generalized epilepsies: insights from neuropsychology and neuroimaging. Front. Neurol. 11, 144 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Loughman, A., Bendrups, N. A. & D’Souza, W. J. A systematic review of psychiatric and psychosocial comorbidities of genetic generalised epilepsies (GGE). Neuropsychol. Rev. 26, 364–375 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Wickens, S., Bowden, S. C. & D’Souza, W. Cognitive functioning in children with self-limited epilepsy with centrotemporal spikes: a systematic review and meta-analysis. Epilepsia 58, 1673–1685 (2017).

    Article  PubMed  Google Scholar 

  30. Verche, E., San Luis, C. & Hernández, S. Neuropsychology of frontal lobe epilepsy in children and adults: systematic review and meta-analysis. Epilepsy Behav. 88, 15–20 (2018).

    Article  PubMed  Google Scholar 

  31. Loughman, A., Bowden, S. C. & D’Souza, W. Cognitive functioning in idiopathic generalised epilepsies: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 43, 20–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, A., Syvertsen, M. & Pal, D. K. Meta-analysis of response inhibition in juvenile myoclonic epilepsy. Epilepsy Behav. 106, 107038 (2020).

    Article  PubMed  Google Scholar 

  33. Shorvon, S. D. The causes of epilepsy: changing concepts of etiology of epilepsy over the past 150 years. Epilepsia 52, 1033–1044 (2011).

    Article  PubMed  Google Scholar 

  34. Gastaut, H. Clinical and electroencephalographical classification of epileptic seizures. Epilepsia 10, 2–13 (1969).

    Google Scholar 

  35. Wolf, P. Basic principles of the ILAE syndrome classification. Epilepsy Res. 70, S20–S26 (2006).

    Article  PubMed  Google Scholar 

  36. Wolf, P. History of epilepsy: nosological concepts and classification. Epileptic Disord. 16, 261–269 (2014).

    Article  PubMed  Google Scholar 

  37. Scheffer, I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58, 512–521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Baxendale, S. & Thompson, P. Beyond localization: the role of traditional neuropsychological tests in an age of imaging. Epilepsia 51, 2225–2230 (2010).

    Article  PubMed  Google Scholar 

  39. Gold, J. A., Sher, Y. & Maldonado, J. R. Frontal lobe epilepsy: a primer for psychiatrists and a systematic review of psychiatric manifestations. Psychosomatics 57, 445–464 (2016).

    Article  PubMed  Google Scholar 

  40. Foran, A., Bowden, S., Bardenhagen, F., Cook, M. & Meade, C. Specificity of psychopathology in temporal lobe epilepsy. Epilepsy Behav. 27, 193–199 (2013).

    Article  PubMed  Google Scholar 

  41. Gloor, P., Jasper, H. & Milner, B. Higher functions of the nervous system. Annu. Rev. Physiol. 18, 359–386 (1956).

    Article  CAS  PubMed  Google Scholar 

  42. Milner, B. Psychological aspects of focal epilepsy and its neurosurgical management. Adv. Neurol. 8, 299–321 (1975).

    CAS  PubMed  Google Scholar 

  43. Mirsky, A. F., Primac, D. W., Marsan, C. A., Rosvold, H. E. & Stevens, J. R. A comparison of the psychological test performance of atients with focal and nonfocal epilepsy. Exp. Neurol. 2, 75–89 (1960).

    Article  CAS  PubMed  Google Scholar 

  44. Staden, U., Isaacs, E., Boyd, S. G., Brandl, U. & Neville, B. G. Language dysfunction in children with Rolandic epilepsy. Neuropediatrics 29, 242–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Germanò, E. et al. Benign childhood epilepsy with occipital paroxysms: neuropsychological findings. Epilepsy Res. 64, 137–150 (2005).

    Article  PubMed  Google Scholar 

  46. Swartz, B. E., Halgren, E., Simpkins, F. & Syndulko, K. Primary memory in patients with frontal and primary generalized epilepsy. J. Epilepsy 7, 232–241 (1994).

    Article  Google Scholar 

  47. Janz, D. & Christian, W. Impulsiv-petit mal. Dtsch. Z. Nervenheilk 176, 346–386 (1957).

    Article  Google Scholar 

  48. Jokeit, H. & Schacher, M. Neuropsychological aspects of type of epilepsy and etiological factors in adults. Epilepsy Behav. 5, S14–S20 (2004).

    Article  PubMed  Google Scholar 

  49. Schoenfeld, J. et al. Neuropsychological and behavioral status of children with complex partial seizures. Dev. Med. Child Neurol. 41, 724–731 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Guimarães, C. A. et al. Temporal lobe epilepsy in childhood: comprehensive neuropsychological assessment. J. Child Neurol. 22, 836–840 (2007).

    Article  PubMed  Google Scholar 

  51. Rzezak, P. et al. Frontal lobe dysfunction in children with temporal lobe epilepsy. Pediatr. Neurol. 37, 176–185 (2007).

    Article  PubMed  Google Scholar 

  52. Braakman, H. M. et al. Cognitive and behavioral complications of frontal lobe epilepsy in children: a review of the literature. Epilepsia 52, 849–856 (2011).

    Article  PubMed  Google Scholar 

  53. Braakman, H. M. et al. Cognitive and behavioural findings in children with frontal lobe epilepsy. Eur. J. Paediatr. Neurol. 16, 707–715 (2012).

    Article  PubMed  Google Scholar 

  54. Smith, M. L. Rethinking cognition and behavior in the new classification for childhood epilepsy: examples from frontal lobe and temporal lobe epilepsies. Epilepsy Behav. 64, 313–317 (2016).

    Article  PubMed  Google Scholar 

  55. Hermann, B. P., Seidenberg, M., Schoenfeld, J. & Davies, K. Neuropsychological characteristics of the syndrome of mesial temporal lobe epilepsy. Arch. Neurol. 54, 369–376 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Oyegbile, T. O. et al. The nature and course of neuropsychological morbidity in chronic temporal lobe epilepsy. Neurology 62, 1736–1742 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, W. H. et al. Neuropsychological performance and seizure-related risk factors in patients with temporal lobe epilepsy: a retrospective cross-sectional study. Epilepsy Behav. 22, 728–734 (2011).

    Article  PubMed  Google Scholar 

  58. Hwang, G. et al. Cognitive slowing and its underlying neurobiology in temporal lobe epilepsy. Cortex 117, 41–52 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Patrikelis, P. et al. Preoperative neuropsychological presentation of patients with refractory frontal lobe epilepsy. Acta Neurochir. 158, 1139–1150 (2016).

    Article  PubMed  Google Scholar 

  60. Patrikelis, P., Angelakis, E. & Gatzonis, S. Neurocognitive and behavioral functioning in frontal lobe epilepsy: a review. Epilepsy Behav. 14, 19–26 (2009).

    Article  PubMed  Google Scholar 

  61. Exner, C. et al. Neuropsychological performance in frontal lobe epilepsy. Seizure 11, 20–32 (2002).

    Article  PubMed  Google Scholar 

  62. Gülgönen, S., Demirbilek, V., Korkmaz, B., Dervent, A. & Townes, B. D. Neuropsychological functions in idiopathic occipital lobe epilepsy. Epilepsia 41, 405–411 (2000).

    Article  PubMed  Google Scholar 

  63. Gleissner, U., Kuczaty, S., Clusmann, H., Elger, C. E. & Helmstaedter, C. Neuropsychological results in pediatric patients with epilepsy surgery in the parietal cortex. Epilepsia 49, 700–704 (2008).

    Article  PubMed  Google Scholar 

  64. Traianou, A., Patrikelis, P., Kosmidis, M. H., Kimiskidis, V. & Gatzonis, S. The neuropsychological profile of parietal and occipital lobe epilepsy. Epilepsy Behav. 94, 137–143 (2019).

    Article  PubMed  Google Scholar 

  65. Stretton, J. & Thompson, P. J. Frontal lobe function in temporal lobe epilepsy. Epilepsy Res. 98, 1–13 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Helmstaedter, C., Kemper, B. & Elger, C. E. Neuropsychological aspects of frontal lobe epilepsy. Neuropsychologia 34, 399–406 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Wandschneider, B., Thompson, P. J., Vollmar, C. & Koepp, M. J. Frontal lobe function and structure in juvenile myoclonic epilepsy: a comprehensive review of neuropsychological and imaging data. Epilepsia 53, 2091–2098 (2012).

    Article  PubMed  Google Scholar 

  68. Conant, L. L., Wilfong, A., Inglese, C. & Schwarte, A. Dysfunction of executive and related processes in childhood absence epilepsy. Epilepsy Behav. 18, 414–423 (2010).

    Article  PubMed  Google Scholar 

  69. Filippini, M. et al. Neuropsychological profile in new-onset benign epilepsy with centrotemporal spikes (BECTS): focusing on executive functions. Epilepsy Behav. 54, 71–79 (2016).

    Article  PubMed  Google Scholar 

  70. Neri, M. L. et al. Neuropsychological assessment of children with Rolandic epilepsy: executive functions. Epilepsy Behav. 24, 403–407 (2012).

    Article  PubMed  Google Scholar 

  71. Caplan, R. et al. Language in pediatric epilepsy. Epilepsia 50, 2397–2407 (2009).

    Article  PubMed  Google Scholar 

  72. Jackson, D. C. et al. The neuropsychological and academic substrate of new/recent-onset epilepsies. J. Pediatr. 162, 1047–1053.e1 (2013).

    Article  PubMed  Google Scholar 

  73. Verly, M. et al. Evaluation of the language profile in children with Rolandic epilepsy and developmental dysphasia: evidence for distinct strengths and weaknesses. Brain Lang. 170, 18–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Smith, A. B., Bajomo, O. & Pal, D. K. A meta-analysis of literacy and language in children with Rolandic epilepsy. Dev. Med. Child Neurol. 57, 1019–1026 (2015).

    Article  PubMed  Google Scholar 

  75. Carvalho, K. C. et al. Cognitive performance in juvenile myoclonic epilepsy patients with specific endophenotypes. Seizure 40, 33–41 (2016).

    Article  PubMed  Google Scholar 

  76. Sonmez, F., Atakli, D., Sari, H., Atay, T. & Arpaci, B. Cognitive function in juvenile myoclonic epilepsy. Epilepsy Behav. 5, 329–336 (2004).

    Article  PubMed  Google Scholar 

  77. Hamberger, M. J. & Cole, J. Language organization and reorganization in epilepsy. Neuropsychol. Rev. 21, 240–251 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bartha-Doering, L. & Trinka, E. The interictal language profile in adult epilepsy. Epilepsia 55, 1512–1525 (2014).

    Article  PubMed  Google Scholar 

  79. Fastenau, P. S. et al. Neuropsychological status at seizure onset in children: risk factors for early cognitive deficits. Neurology 73, 526–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lopes, A. F. et al. Intellectual functioning in children with epilepsy: frontal lobe epilepsy, childhood absence epilepsy and benign epilepsy with centro-temporal spikes. Seizure 22, 886–892 (2013).

    Article  PubMed  Google Scholar 

  81. Lopes, A. F., Monteiro, J. P., Fonseca, M. J., Robalo, C. & Simões, M. R. Memory functioning in children with epilepsy: frontal lobe epilepsy, childhood absence epilepsy, and benign epilepsy with centrotemporal spikes. Behav. Neurol. 2014, 218637 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nolan, M. A. et al. Intelligence in childhood epilepsy syndromes. Epilepsy Res. 53, 139–150 (2003).

    Article  PubMed  Google Scholar 

  83. Nolan, M. A. et al. Memory function in childhood epilepsy syndromes. J. Paediatr. Child Health 40, 20–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Laurent, A. et al. Metabolic correlates of cognitive impairment in mesial temporal lobe epilepsy. Epilepsy Behav. 105, 106948 (2020).

    Article  PubMed  Google Scholar 

  85. Jokeit, H. et al. Prefrontal asymmetric interictal glucose hypometabolism and cognitive impairment in patients with temporal lobe epilepsy. Brain 120, 2283–2294 (1997).

    Article  PubMed  Google Scholar 

  86. Dinkelacker, V., Xin, X., Baulac, M., Samson, S. & Dupont, S. Interictal epileptic discharge correlates with global and frontal cognitive dysfunction in temporal lobe epilepsy. Epilepsy Behav. 62, 197–203 (2016).

    Article  PubMed  Google Scholar 

  87. Keller, S. S., Baker, G., Downes, J. J. & Roberts, N. Quantitative MRI of the prefrontal cortex and executive function in patients with temporal lobe epilepsy. Epilepsy Behav. 15, 186–195 (2009).

    Article  PubMed  Google Scholar 

  88. Riley, J. D., Moore, S., Cramer, S. C. & Lin, J. J. Caudate atrophy and impaired frontostriatal connections are linked to executive dysfunction in temporal lobe epilepsy. Epilepsy Behav. 21, 80–87 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hermann, B., Hansen, R., Seidenberg, M., Magnotta, V. & O’Leary, D. Neurodevelopmental vulnerability of the corpus callosum to childhood onset localization-related epilepsy. Neuroimage 18, 284–292 (2003).

    Article  PubMed  Google Scholar 

  90. Tuchscherer, V. et al. Extrahippocampal integrity in temporal lobe epilepsy and cognition: thalamus and executive functioning. Epilepsy Behav. 17, 478–482 (2010).

    Article  PubMed  Google Scholar 

  91. Reyes, A. et al. Decreased neurite density within frontostriatal networks is associated with executive dysfunction in temporal lobe epilepsy. Epilepsy Behav. 78, 187–193 (2018).

    Article  PubMed  Google Scholar 

  92. Kucukboyaci, N. E. et al. Role of frontotemporal fiber tract integrity in task-switching performance of healthy controls and patients with temporal lobe epilepsy. J. Int. Neuropsychol. Soc. 18, 57–67 (2012).

    Article  PubMed  Google Scholar 

  93. Hermann, B. et al. Network, clinical and sociodemographic features of cognitive phenotypes in temporal lobe epilepsy. Neuroimage Clin. 27, 102341 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Oyegbile, T. O. et al. Executive dysfunction is associated with an altered executive control network in pediatric temporal lobe epilepsy. Epilepsy Behav. 86, 145–152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Oyegbile, T. O. et al. Default mode network deactivation in pediatric temporal lobe epilepsy: relationship to a working memory task and executive function tests. Epilepsy Behav. 94, 124–130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhang, C. et al. Characteristics of resting-state functional connectivity in intractable unilateral temporal lobe epilepsy patients with impaired executive control function. Front. Hum. Neurosci. 11, 609 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bromfield, E. B. et al. Cerebral metabolism and depression in patients with complex partial seizures. Arch. Neurol. 49, 617–623 (1992).

    Article  CAS  PubMed  Google Scholar 

  98. Salzberg, M. et al. Depression in temporal lobe epilepsy surgery patients: an FDG-PET study. Epilepsia 47, 2125–2130 (2006).

    Article  PubMed  Google Scholar 

  99. Butler, T. et al. Cortical thickness abnormalities associated with depressive symptoms in temporal lobe epilepsy. Epilepsy Behav. 23, 64–67 (2012).

    Article  PubMed  Google Scholar 

  100. Nogueira, M. H. et al. Major depressive disorder associated with reduced cortical thickness in women with temporal lobe epilepsy. Front. Neurol. 10, 1398 (2019).

    Article  PubMed  Google Scholar 

  101. Conradi, N. et al. Factorial validity of a neuropsychological test battery and its ability to discern temporal lobe epilepsy from frontal lobe epilepsy — a retrospective study. Seizure 74, 81–88 (2020).

    Article  PubMed  Google Scholar 

  102. Lima, E. M. et al. The executive profile of children with benign epilepsy of childhood with centrotemporal spikes and temporal lobe epilepsy. Epilepsy Behav. 72, 173–177 (2017).

    Article  PubMed  Google Scholar 

  103. Frank, B. et al. Machine learning as a new paradigm for characterizing localization and lateralization of neuropsychological test data in temporal lobe epilepsy. Epilepsy Behav. 86, 58–65 (2018).

    Article  PubMed  Google Scholar 

  104. Roger, E. et al. A machine learning approach to explore cognitive signatures in patients with temporo-mesial epilepsy. Neuropsychologia 142, 107455 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Margerison, J. H. & Corsellis, J. A. Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89, 499–530 (1966).

    Article  CAS  PubMed  Google Scholar 

  106. Blanc, F. et al. Investigation of widespread neocortical pathology associated with hippocampal sclerosis in epilepsy: a postmortem study. Epilepsia 52, 10–21 (2011).

    Article  PubMed  Google Scholar 

  107. Tai, X. Y. et al. Review: neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: clinical, pathological and neuroimaging evidence. Neuropathol. Appl. Neurobiol. 44, 70–90 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Gourmaud, S. et al. Alzheimer-like amyloid and tau alterations associated with cognitive deficit in temporal lobe epilepsy. Brain 143, 191–209 (2020).

    Article  PubMed  Google Scholar 

  109. Mackenzie, I. R. & Miller, L. A. Senile plaques in temporal lobe epilepsy. Acta Neuropathol. 87, 504–510 (1994).

    Article  CAS  PubMed  Google Scholar 

  110. Smith, K. M. et al. Tau deposition in young adults with drug-resistant focal epilepsy. Epilepsia 60, 2398–2403 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Meencke, H. J., Janz, D. & Cervos-Navarro, J. Neuropathology of primary generalized epilepsies with awakening grand mal. Acta Neuropathol. Suppl. 7, 378–380 (1981).

    Article  CAS  PubMed  Google Scholar 

  112. Meencke, H. J. & Janz, D. Neuropathological findings in primary generalized epilepsy: a study of eight cases. Epilepsia 25, 8–21 (1984).

    Article  CAS  PubMed  Google Scholar 

  113. Opeskin, K., Kalnins, R. M., Halliday, G., Cartwright, H. & Berkovic, S. F. Idiopathic generalized epilepsy: lack of significant microdysgenesis. Neurology 55, 1101–1106 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Croll, L., Szabo, C. A., Abou-Madi, N. & Devinsky, O. Epilepsy in nonhuman primates. Epilepsia 60, 1526–1538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Young, N. A. et al. Epileptic baboons have lower numbers of neurons in specific areas of cortex. Proc. Natl Acad. Sci. USA 110, 19107–19112 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Keller, S. S. & Roberts, N. Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia 49, 741–757 (2008).

    Article  PubMed  Google Scholar 

  117. Lin, J. J. et al. Reduced neocortical thickness and complexity mapped in mesial temporal lobe epilepsy with hippocampal sclerosis. Cereb. Cortex 17, 2007–2018 (2007).

    Article  PubMed  Google Scholar 

  118. Keller, S. S. et al. Morphometric MRI alterations and postoperative seizure control in refractory temporal lobe epilepsy. Hum. Brain Mapp. 36, 1637–1647 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. McDonald, C. R. et al. Regional neocortical thinning in mesial temporal lobe epilepsy. Epilepsia 49, 794–803 (2008).

    Article  PubMed  Google Scholar 

  120. Oyegbile, T. et al. Quantitative measurement of cortical surface features in localization-related temporal lobe epilepsy. Neuropsychology 18, 729–737 (2004).

    Article  PubMed  Google Scholar 

  121. Ronan, L. et al. Cortical curvature analysis in MRI-negative temporal lobe epilepsy: a surrogate marker for malformations of cortical development. Epilepsia 52, 28–34 (2011).

    Article  PubMed  Google Scholar 

  122. Nuyts, S., D’Souza, W., Bowden, S. C. & Vogrin, S. J. Structural brain abnormalities in genetic generalized epilepsies: a systematic review and meta-analysis. Epilepsia 58, 2025–2037 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Slinger, G., Sinke, M. R., Braun, K. P. & Otte, W. M. White matter abnormalities at a regional and voxel level in focal and generalized epilepsy: a systematic review and meta-analysis. Neuroimage Clin. 12, 902–909 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Whelan, C. D. et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain 141, 391–408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hatton, S. N. et al. White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study. Brain 143, 2454–2473 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Caciagli, L., Bernhardt, B. C., Hong, S. J., Bernasconi, A. & Bernasconi, N. Functional network alterations and their structural substrate in drug-resistant epilepsy. Front. Neurosci. 8, 411 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Carney, P. W. & Jackson, G. D. Insights into the mechanisms of absence seizure generation provided by EEG with functional MRI. Front. Neurol. 5, 162 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Vollmar, C. et al. Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study. Brain 134, 1710–1719 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Blumenfeld, H. et al. Cortical and subcortical networks in human secondarily generalized tonic–clonic seizures. Brain 132, 999–1012 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, K. L. et al. Metabolic covariance networks combining graph theory measuring aberrant topological patterns in mesial temporal lobe epilepsy. CNS Neurosci. Ther. 25, 396–408 (2019).

    Article  PubMed  Google Scholar 

  131. Englot, D. J. et al. Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain 138, 2249–2262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. van Mierlo, P., Höller, Y., Focke, N. K. & Vulliemoz, S. Network perspectives on epilepsy using EEG/MEG source connectivity. Front. Neurol. 10, 721 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Lagarde, S. et al. Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies. Brain 141, 2966–2980 (2018).

    Article  PubMed  Google Scholar 

  134. Morgan, V. L., Conrad, B. N., Abou-Khalil, B., Rogers, B. P. & Kang, H. Increasing structural atrophy and functional isolation of the temporal lobe with duration of disease in temporal lobe epilepsy. Epilepsy Res. 110, 171–178 (2015).

    Article  PubMed  Google Scholar 

  135. Lee, H. W. et al. Altered functional connectivity in seizure onset zones revealed by fMRI intrinsic connectivity. Neurology 83, 2269–2277 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Dansereau, C. L. et al. Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment. Front. Neurosci. 8, 419 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Dinkelacker, V. et al. Hippocampal–thalamic wiring in medial temporal lobe epilepsy: enhanced connectivity per hippocampal voxel. Epilepsia 56, 1217–1226 (2015).

    Article  PubMed  Google Scholar 

  138. Pedersen, M., Curwood, E. K., Vaughan, D. N., Omidvarnia, A. H. & Jackson, G. D. Abnormal brain areas common to the focal epilepsies: multivariate pattern analysis of fMRI. Brain Connect. 6, 208–215 (2016).

    Article  PubMed  Google Scholar 

  139. He, X. et al. Disrupted basal ganglia-thalamocortical loops in focal to bilateral tonic–clonic seizures. Brain 143, 175–190 (2020).

    Article  PubMed  Google Scholar 

  140. Haneef, Z. et al. Functional connectivity of hippocampal networks in temporal lobe epilepsy. Epilepsia 55, 137–145 (2014).

    Article  PubMed  Google Scholar 

  141. Liao, W. et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS ONE 5, e8525 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Luo, C., An, D., Yao, D. & Gotman, J. Patient-specific connectivity pattern of epileptic network in frontal lobe epilepsy. Neuroimage Clin. 4, 668–675 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Nedic, S. et al. Using network dynamic fMRI for detection of epileptogenic foci. BMC Neurol. 15, 262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Widjaja, E. et al. Disrupted global and regional structural networks and subnetworks in children with localization-related epilepsy. AJNR Am. J. Neuroradiol. 36, 1362–1368 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Haneef, Z., Lenartowicz, A., Yeh, H. J., Engel, J. Jr. & Stern, J. M. Effect of lateralized temporal lobe epilepsy on the default mode network. Epilepsy Behav. 25, 350–357 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Bai, X. et al. Resting functional connectivity between the hemispheres in childhood absence epilepsy. Neurology 76, 1960–1967 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kemmotsu, N. et al. MRI analysis in temporal lobe epilepsy: cortical thinning and white matter disruptions are related to side of seizure onset. Epilepsia 52, 2257–2266 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lee, C. Y. et al. Microstructural integrity of early- versus late-myelinating white matter tracts in medial temporal lobe epilepsy. Epilepsia 54, 1801–1809 (2013).

    Article  PubMed  Google Scholar 

  149. Thompson, P. J. & Duncan, J. S. Cognitive decline in severe intractable epilepsy. Epilepsia 46, 1780–1787 (2005).

    Article  PubMed  Google Scholar 

  150. Galovic, M. et al. Progressive cortical thinning in patients with focal epilepsy. JAMA Neurol. 76, 1230–1239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Hermann, B. P. et al. Cognitive prognosis in chronic temporal lobe epilepsy. Ann. Neurol. 60, 80–87 (2006).

    Article  PubMed  Google Scholar 

  152. Austin, J. K. et al. Behavior problems in children before first recognized seizures. Pediatrics 107, 115–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Hermann, B. P., Jones, J. E., Jackson, D. C. & Seidenberg, M. Starting at the beginning: the neuropsychological status of children with new-onset epilepsies. Epileptic Disord. 14, 12–21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Taylor, J. et al. Patients with epilepsy: cognitively compromised before the start of antiepileptic drug treatment? Epilepsia 51, 48–56 (2010).

    Article  PubMed  Google Scholar 

  155. Witt, J. A. & Helmstaedter, C. Cognition in the early stages of adult epilepsy. Seizure 26, 65–68 (2015).

    Article  PubMed  Google Scholar 

  156. Oostrom, K. J., Smeets-Schouten, A., Kruitwagen, C. L., Peters, A. C. & Jennekens-Schinkel, A. Not only a matter of epilepsy: early problems of cognition and behavior in children with “epilepsy only” — a prospective, longitudinal, controlled study starting at diagnosis. Pediatrics 112, 1338–1344 (2003).

    Article  PubMed  Google Scholar 

  157. Keezer, M. R., Sisodiya, S. M. & Sander, J. W. Comorbidities of epilepsy: current concepts and future perspectives. Lancet Neurol. 15, 106–115 (2016).

    Article  PubMed  Google Scholar 

  158. Lüders, H. O., Najm, I., Nair, D., Widdess-Walsh, P. & Bingman, W. The epileptogenic zone: general principles. Epileptic Disord. 8, S1–S9 (2006).

    PubMed  Google Scholar 

  159. Goodale, S. E. et al. Resting-state SEEG may help localize epileptogenic brain regions. Neurosurgery 86, 792–801 (2020).

    Article  PubMed  Google Scholar 

  160. Li, Y. H. et al. Localization of epileptogenic zone based on graph analysis of stereo-EEG. Epilepsy Res. 128, 149–157 (2016).

    Article  PubMed  Google Scholar 

  161. Mao, J. W. et al. Dynamic network connectivity analysis to identify epileptogenic zones based on stereo-electroencephalography. Front. Comput. Neurosci. 10, 113 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Storti, S. F., Galazzo, I. B., Khan, S., Manganotti, P. & Menegaz, G. Exploring the epileptic brain network using time-variant effective connectivity and graph theory. IEEE J. Biomed. Health Inf. 21, 1411–1421 (2017).

    Article  Google Scholar 

  163. van Mierlo, P. et al. Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. Neuroimage 56, 1122–1133 (2011).

    Article  PubMed  Google Scholar 

  164. Bernhardt, B. C., Hong, S., Bernasconi, A. & Bernasconi, N. Imaging structural and functional brain networks in temporal lobe epilepsy. Front. Hum. Neurosci. 7, 624 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Focke, N. K. et al. Voxel-based diffusion tensor imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage 40, 728–737 (2008).

    Article  PubMed  Google Scholar 

  166. Larivière, S. et al. Microstructure-informed connectomics: enriching large-scale descriptions of healthy and diseased brains. Brain Connect. 9, 113–127 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Morgan, V. L., Chang, C., Englot, D. J. & Rogers, B. P. Temporal lobe epilepsy alters spatio-temporal dynamics of the hippocampal functional network. Neuroimage Clin. 26, 102254 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Jehi, L. Outcomes of epilepsy surgery for epileptic networks. Epilepsy Curr. 17, 160–162 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Rayner, G., Tailby, C., Jackson, G. & Wilson, S. Looking beyond lesions for causes of neuropsychological impairment in epilepsy. Neurology 92, e680–e689 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Wilson, S. J. & Baxendale, S. The new approach to classification: rethinking cognition and behavior in epilepsy. Epilepsy Behav. 41, 307–310 (2014).

    Article  PubMed  Google Scholar 

  171. Rayner, G., Jackson, G. D. & Wilson, S. J. Two distinct symptom-based phenotypes of depression in epilepsy yield specific clinical and etiological insights. Epilepsy Behav. 64, 336–344 (2016).

    Article  PubMed  Google Scholar 

  172. Gonzalez, L. M. & Wrennall, J. A. A neuropsychological model for the pre-surgical evaluation of children with focal-onset epilepsy: an integrated approach. Seizure 77, 29–39 (2020).

    Article  PubMed  Google Scholar 

  173. Rayner, G. & Tailby, C. Current concepts of memory disorder in epilepsy: edging towards a network account. Curr. Neurol. Neurosci. Rep. 17, 55 (2017).

    Article  PubMed  Google Scholar 

  174. Parker, D. Kuhnian revolutions in neuroscience: the role of tool development. Biol. Philos. 33, 17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Paradiso, S., Hermann, B. P. & Somes, G. Patterns of academic competence in adults with epilepsy: a cluster analytic study. Epilepsy Res. 19, 253–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  176. Hermann, B., Seidenberg, M., Lee, E. J., Chan, F. & Rutecki, P. Cognitive phenotypes in temporal lobe epilepsy. J. Int. Neuropsychol. Soc. 13, 12–20 (2007).

    Article  PubMed  Google Scholar 

  177. Dabbs, K., Jones, J., Seidenberg, M. & Hermann, B. Neuroanatomical correlates of cognitive phenotypes in temporal lobe epilepsy. Epilepsy Behav. 15, 445–451 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Berl, M. M. et al. Characterization of atypical language activation patterns in focal epilepsy. Ann. Neurol. 75, 33–42 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Hermann, B. P. et al. Cognitive phenotypes in childhood idiopathic epilepsies. Epilepsy Behav. 61, 269–274 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Rodríguez-Cruces, R. et al. Association of white matter diffusion characteristics and cognitive deficits in temporal lobe epilepsy. Epilepsy Behav. 79, 138–145 (2018).

    Article  PubMed  Google Scholar 

  181. Elverman, K. H. et al. Temporal lobe epilepsy is associated with distinct cognitive phenotypes. Epilepsy Behav. 96, 61–68 (2019).

    Article  PubMed  Google Scholar 

  182. Reyes, A. et al. Cognitive phenotypes in temporal lobe epilepsy are associated with distinct patterns of white matter network abnormalities. Neurology 92, e1957–e1968 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kaestner, E. et al. Identifying the neural basis of a language-impaired phenotype of temporal lobe epilepsy. Epilepsia 60, 1627–1638 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Baxendale, S. & Thompson, P. The association of cognitive phenotypes with postoperative outcomes after epilepsy surgery in patients with temporal lobe epilepsy. Epilepsy Behav. 112, 107386 (2020).

    Article  PubMed  Google Scholar 

  185. Struck, A. F. et al. Regional and global resting-state functional MR connectivity in temporal lobe epilepsy: results from the Epilepsy Connectome Project. Epilepsy Behav. 117, 107841 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Reyes, A. et al. Cognitive phenotypes in temporal lobe epilepsy utilizing data- and clinically driven approaches: moving toward a new taxonomy. Epilepsia 61, 1211–1220 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Rodríguez-Cruces, R., Bernhardt, B. C. & Concha, L. Multidimensional associations between cognition and connectome organization in temporal lobe epilepsy. Neuroimage 213, 116706 (2020).

    Article  PubMed  Google Scholar 

  188. Modi, A. C. et al. Executive functioning phenotypes in youth with epilepsy. Epilepsy Behav. 90, 112–118 (2019).

    Article  PubMed  Google Scholar 

  189. Puka, K. & Smith, M. L. Long-term outcomes of children with drug-resistant epilepsy across multiple cognitive domains. Dev. Med. Child Neurol. 63, 690–696 (2021).

    Article  PubMed  Google Scholar 

  190. Arrotta, A. et al. Cognitive phenotypes in frontal lobe epilepsy. Presented at the 49th Annual Meeting of the International Neuropsychological Society (2020).

  191. Hermann, B. P. et al. Behavioral phenotypes of childhood idiopathic epilepsies. Epilepsia 61, 1427–1437 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Parvizi, J. & Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 21, 474–483 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Helfrich, R. F. & Knight, R. T. Oscillatory dynamics of prefrontal cognitive control. Trends Cogn. Sci. 20, 916–930 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Le Van Quyen, M. et al. High-frequency oscillations in human and monkey neocortex during the wake–sleep cycle. Proc. Natl Acad. Sci. USA 113, 9363–9368 (2016).

    Article  CAS  Google Scholar 

  195. Shuman, T., Amendolara, B. & Golshani, P. Theta rhythmopathy as a cause of cognitive disability in TLE. Epilepsy Curr. 17, 107–111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Liu, S. & Parvizi, J. Cognitive refractory state caused by spontaneous epileptic high-frequency oscillations in the human brain. Sci. Transl Med. 11, eaax7830 (2019).

    Article  PubMed  Google Scholar 

  197. Matsumoto, R., Kunieda, T. & Nair, D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 44, 27–36 (2017).

    Article  PubMed  Google Scholar 

  198. Keller, C. J. et al. Mapping human brain networks with cortico-cortical evoked potentials. Phil. Trans. R. Soc. B 369, 20130528 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Alonso, F., Sweet, J. & Miller, J. Speech mapping using depth electrodes: the “electric Wada”. Clin. Neurol. Neurosurg. 144, 88–90 (2016).

    Article  PubMed  Google Scholar 

  200. Wilson, S. J. et al. Developmental outcomes of childhood-onset temporal lobe epilepsy: a community-based study. Epilepsia 53, 1587–1596 (2012).

    Article  PubMed  Google Scholar 

  201. Hermann, B. P., Struck, A. F., Dabbs, K., Seidenberg, M. & Jones, J. E. Behavioral phenotypes of temporal lobe epilepsy. Epilepsia Open 6, 369–380 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Sajobi, T. T. et al. Multivariate trajectories across multiple domains of health-related quality of life in children with new-onset epilepsy. Epilepsy Behav. 75, 72–78 (2017).

    Article  PubMed  Google Scholar 

  203. Loiselle, K. A., Ramsey, R. R., Rausch, J. R. & Modi, A. C. Trajectories of health-related quality of life among children with newly diagnosed epilepsy. J. Pediatr. Psychol. 41, 1011–1021 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Ramsey, R. R., Loiselle, K., Rausch, J. R., Harrison, J. & Modi, A. C. Predictors of trajectories of epilepsy-specific quality of life among children newly diagnosed with epilepsy. Epilepsy Behav. 57, 202–210 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Witt, J. A., Elger, C. E. & Helmstaedter, C. Adverse cognitive effects of antiepileptic pharmacotherapy: each additional drug matters. Eur. Neuropsychopharmacol. 25, 1954–1959 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. Witt, J. A. & Helmstaedter, C. Monitoring the cognitive effects of antiepileptic pharmacotherapy — approaching the individual patient. Epilepsy Behav. 26, 450–456 (2013).

    Article  PubMed  Google Scholar 

  207. Ye, Z. et al. Somatic mutation: the hidden genetics of brain malformations and focal epilepsies. Epilepsy Res. 155, 106161 (2019).

    Article  CAS  PubMed  Google Scholar 

  208. Myers, K. A., Johnstone, D. L. & Dyment, D. A. Epilepsy genetics: current knowledge, applications, and future directions. Clin. Genet. 95, 95–111 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Hebbar, M. & Mefford, H. C. Recent advances in epilepsy genomics and genetic testing. F1000Res 9, 185 (2020).

    Article  CAS  Google Scholar 

  210. Kobow, K. & Blümcke, I. Epigenetics in epilepsy. Neurosci. Lett. 667, 40–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Leu, C. et al. Polygenic burden in focal and generalized epilepsies. Brain 142, 3473–3481 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Busch, R. M., Najm, I., Hermann, B. P. & Eng, C. Genetics of cognition in epilepsy. Epilepsy Behav. 41, 297–306 (2014).

    Article  PubMed  Google Scholar 

  213. Kendler, K. S. et al. Stressful life events, genetic liability, and onset of an episode of major depression in women. Am. J. Psychiatry 152, 833–842 (1995).

    Article  CAS  PubMed  Google Scholar 

  214. Kendler, K. S. & Karkowski-Shuman, L. Stressful life events and genetic liability to major depression: genetic control of exposure to the environment? Psychol. Med. 27, 539–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  215. Alhusaini, S. et al. Heritability of subcortical volumetric traits in mesial temporal lobe epilepsy. PLoS ONE 8, e61880 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Alhusaini, S. et al. Temporal cortex morphology in mesial temporal lobe epilepsy patients and their asymptomatic siblings. Cereb. Cortex 26, 1234–1241 (2016).

    Article  PubMed  Google Scholar 

  217. Whelan, C. D. et al. White matter alterations in patients with MRI-negative temporal lobe epilepsy and their asymptomatic siblings. Epilepsia 56, 1551–1561 (2015).

    Article  PubMed  Google Scholar 

  218. Scanlon, C. et al. MRI-based brain structure volumes in temporal lobe epilepsy patients and their unaffected siblings: a preliminary study. J. Neuroimaging 23, 64–70 (2013).

    Article  PubMed  Google Scholar 

  219. Long, L. et al. Shared hippocampal abnormalities in sporadic temporal lobe epilepsy patients and their siblings. Epilepsia 61, 735–746 (2020).

    Article  PubMed  Google Scholar 

  220. Iqbal, N. et al. Neuropsychological profiles of patients with juvenile myoclonic epilepsy and their siblings: an extended study. Epilepsia 56, 1301–1308 (2015).

    Article  PubMed  Google Scholar 

  221. Chowdhury, F. A. et al. Impaired cognitive function in idiopathic generalized epilepsy and unaffected family members: an epilepsy endophenotype. Epilepsia 55, 835–840 (2014).

    Article  PubMed  Google Scholar 

  222. Badawy, R. A., Vogrin, S. J., Lai, A. & Cook, M. J. Capturing the epileptic trait: cortical excitability measures in patients and their unaffected siblings. Brain 136, 1177–1191 (2013).

    Article  PubMed  Google Scholar 

  223. Caciagli, L. et al. Abnormal hippocampal structure and function in juvenile myoclonic epilepsy and unaffected siblings. Brain 142, 2670–2687 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Wandschneider, B. et al. Prospective memory in patients with juvenile myoclonic epilepsy and their healthy siblings. Neurology 75, 2161–2167 (2010).

    Article  CAS  PubMed  Google Scholar 

  225. Wandschneider, B. et al. Motor co-activation in siblings of patients with juvenile myoclonic epilepsy: an imaging endophenotype? Brain 137, 2469–2479 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Wandschneider, B. et al. Developmental MRI markers cosegregate juvenile patients with myoclonic epilepsy and their healthy siblings. Neurology 93, e1272–e1280 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Clarke, T. et al. High risk of reading disability and speech sound disorder in Rolandic epilepsy families: case–control study. Epilepsia 48, 2258–2265 (2007).

    PubMed  PubMed Central  Google Scholar 

  228. Smith, A. B. et al. A neurocognitive endophenotype associated with Rolandic epilepsy. Epilepsia 53, 705–711 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Verrotti, A. et al. Neuropsychological impairment in children with Rolandic epilepsy and in their siblings. Epilepsy Behav. 28, 108–112 (2013).

    Article  PubMed  Google Scholar 

  230. Hesdorffer, D. C., Caplan, R. & Berg, A. T. Familial clustering of epilepsy and behavioral disorders: evidence for a shared genetic basis. Epilepsia 53, 301–307 (2012).

    Article  PubMed  Google Scholar 

  231. Almane, D. N. et al. Contribution of family relatedness to neurobehavioral comorbidities in idiopathic childhood epilepsies. J. Int. Neuropsychol. Soc. 24, 653–661 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Busch, R. M. et al. ApoE-ε4 is associated with reduced memory in long-standing intractable temporal lobe epilepsy. Neurology 68, 409–414 (2007).

    Article  CAS  PubMed  Google Scholar 

  233. Gambardella, A. et al. ApoE ε4 allele and disease duration affect verbal learning in mild temporal lobe epilepsy. Epilepsia 46, 110–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  234. Warburton, A. et al. NRSF and BDNF polymorphisms as biomarkers of cognitive dysfunction in adults with newly diagnosed epilepsy. Epilepsy Behav. 54, 117–127 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Sidhu, M. K. et al. The impact of brain-derived neurotrophic factor Val66Met polymorphism on cognition and functional brain networks in patients with intractable partial epilepsy. CNS Neurosci. Ther. 25, 223–232 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Colliva, C. et al. Executive functioning in children with epilepsy: genes matter. Epilepsy Behav. 95, 137–147 (2019).

    Article  PubMed  Google Scholar 

  237. Doherty, C. et al. The role of genetic polymorphisms in executive functioning performance in temporal lobe epilepsy. Epilepsy Behav. 121, 108088 (2021).

    Article  PubMed  Google Scholar 

  238. Doherty, C. et al. BDNF and COMT, but not APOE, alleles are associated with psychiatric symptoms in refractory epilepsy. Epilepsy Behav. 94, 131–136 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Busch, R. M. et al. Verbal memory dysfunction is associated with alterations in brain transcriptome in dominant temporal lobe epilepsy. Epilepsia 61, 2203–2213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Bungenberg, J. et al. Gene expression variance in hippocampal tissue of temporal lobe epilepsy patients corresponds to differential memory performance. Neurobiol. Dis. 86, 121–130 (2016).

    Article  CAS  PubMed  Google Scholar 

  241. Tai, X. Y. et al. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections. Brain 139, 2441–2455 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Noebels, J. L. Single-gene determinants of epilepsy comorbidity. Cold Spring Harb. Perspect. Med. 5, a022756 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Pickrell, W. O. et al. Epilepsy and deprivation, a data linkage study. Epilepsia 56, 585–591 (2015).

    Article  PubMed  Google Scholar 

  244. Hesdorffer, D. C. et al. Socioeconomic status is a risk factor for epilepsy in Icelandic adults but not in children. Epilepsia 46, 1297–1303 (2005).

    Article  PubMed  Google Scholar 

  245. Kobau, R. et al. Epilepsy surveillance among adults — 19 States, Behavioral Risk Factor Surveillance System, 2005. MMWR Surveill. Summ. 57, 1–20 (2008).

    PubMed  Google Scholar 

  246. Nimmo-Smith, V., Brugha, T. S., Kerr, M. P., McManus, S. & Rai, D. Discrimination, domestic violence, abuse, and other adverse life events in people with epilepsy: population-based study to assess the burden of these events and their contribution to psychopathology. Epilepsia 57, 1870–1878 (2016).

    Article  PubMed  Google Scholar 

  247. Gordon, K. E. & Dooley, J. M. Food insecurity and epilepsy in a nationally representative sample. Epilepsy Behav. 43, 139–142 (2015).

    Article  PubMed  Google Scholar 

  248. O’Malley, J. A., Klett, B. M., Klein, M. D., Inman, N. & Beck, A. F. Revealing the prevalence and consequences of food insecurity in children with epilepsy. J. Community Health 42, 1213–1219 (2017).

    Article  PubMed  Google Scholar 

  249. Fiest, K. M., Birbeck, G. L., Jacoby, A. & Jette, N. Stigma in epilepsy. Curr. Neurol. Neurosci. Rep. 14, 444 (2014).

    Article  PubMed  Google Scholar 

  250. Carson, J., Weir, A., Chin, R. F. & McLellan, A. Socioeconomic deprivation is an independent risk factor for behavioral problems in children with epilepsy. Epilepsy Behav. 45, 105–109 (2015).

    Article  PubMed  Google Scholar 

  251. Baxendale, S. & Heaney, D. Socioeconomic status, cognition, and hippocampal sclerosis. Epilepsy Behav. 20, 64–67 (2011).

    Article  PubMed  Google Scholar 

  252. Singhi, P. D., Bansal, U., Singhi, S. & Pershad, D. Determinants of IQ profile in children with idiopathic generalized epilepsy. Epilepsia 33, 1106–1114 (1992).

    Article  CAS  PubMed  Google Scholar 

  253. Taylor, J. et al. Factors predictive of resilience and vulnerability in new-onset epilepsy. Epilepsia 52, 610–618 (2011).

    Article  PubMed  Google Scholar 

  254. Nathan, C. L. & Gutierrez, C. FACETS of health disparities in epilepsy surgery and gaps that need to be addressed. Neurol. Clin. Pract. 8, 340–345 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Greenlund, S. F., Croft, J. B. & Kobau, R. Epilepsy by the numbers: epilepsy deaths by age, race/ethnicity, and gender in the United States significantly increased from 2005 to 2014. Epilepsy Behav. 69, 28–30 (2017).

    Article  PubMed  Google Scholar 

  256. Kind, A. J. H. & Golden, R. N. Social determinants of health: fundamental drivers of health inequity. WMJ 117, 231–232 (2018).

    PubMed  Google Scholar 

  257. Kind, A. J. H. & Buckingham, W. R. Making neighborhood-disadvantage metrics accessible — the Neighborhood Atlas. N. Engl. J. Med. 378, 2456–2458 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Zuelsdorff, M. et al. The area deprivation index: a novel tool for harmonizable risk assessment in Alzheimer’s disease research. Alzheimers Dement. 6, e12039 (2020).

    Google Scholar 

  259. Hunt, J. F. V. et al. Association of neighborhood-level disadvantage with cerebral and hippocampal volume. JAMA Neurol. 77, 451–460 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Powell, W. R. et al. Association of neighborhood-level disadvantage with Alzheimer disease neuropathology. JAMA Netw. Open 3, e207559 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Téllez-Zenteno, J. F., Matijevic, S. & Wiebe, S. Somatic comorbidity of epilepsy in the general population in Canada. Epilepsia 46, 1955–1962 (2005).

    Article  PubMed  Google Scholar 

  262. Gaitatzis, A., Sisodiya, S. M. & Sander, J. W. The somatic comorbidity of epilepsy: a weighty but often unrecognized burden. Epilepsia 53, 1282–1293 (2012).

    Article  PubMed  Google Scholar 

  263. Baxendale, S. et al. The role of obesity in cognitive dysfunction in people with epilepsy. Epilepsy Behav. 45, 187–190 (2015).

    Article  PubMed  Google Scholar 

  264. Hermann, B. P., Sager, M. A., Koscik, R. L., Young, K. & Nakamura, K. Vascular, inflammatory, and metabolic factors associated with cognition in aging persons with chronic epilepsy. Epilepsia 58, e152–e156 (2017).

    Article  CAS  PubMed  Google Scholar 

  265. Arend, J. et al. Depressive, inflammatory, and metabolic factors associated with cognitive impairment in patients with epilepsy. Epilepsy Behav. 86, 49–57 (2018).

    Article  PubMed  Google Scholar 

  266. Reyes, A. et al. The impact of cerebrovascular risk factors on postoperative memory decline in patients with left temporal lobe epilepsy. Epilepsy Behav. 102, 106558 (2020).

    Article  PubMed  Google Scholar 

  267. Hamed, S. A. Atherosclerosis in epilepsy: its causes and implications. Epilepsy Behav. 41, 290–296 (2014).

    Article  PubMed  Google Scholar 

  268. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  269. [No authors listed]. Alzheimer’s disease facts and figures. Alzheimers Dement. 16, 391–460 (2020).

    Google Scholar 

  270. Beydoun, M. A. et al. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 14, 643 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Hermann, B. et al. Growing old with epilepsy: the neglected issue of cognitive and brain health in aging and elder persons with chronic epilepsy. Epilepsia 49, 731–740 (2008).

    Article  PubMed  Google Scholar 

  272. Sen, A., Capelli, V. & Husain, M. Cognition and dementia in older patients with epilepsy. Brain 141, 1592–1608 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Vancampfort, D., Ward, P. B. & Stubbs, B. Physical activity and sedentary levels among people living with epilepsy: a systematic review and meta-analysis. Epilepsy Behav. 99, 106390 (2019).

    Article  PubMed  Google Scholar 

  274. Vancampfort, D., Ward, P. B. & Stubbs, B. Physical fitness levels and moderators in people with epilepsy: a systematic review and meta-analysis. Epilepsy Behav. 99, 106448 (2019).

    Article  PubMed  Google Scholar 

  275. Johnson, E. C., Helen Cross, J. & Reilly, C. Physical activity in people with epilepsy: a systematic review. Epilepsia 61, 1062–1081 (2020).

    Article  PubMed  Google Scholar 

  276. Roth, D. L., Goode, K. T., Williams, V. L. & Faught, E. Physical exercise, stressful life experience, and depression in adults with epilepsy. Epilepsia 35, 1248–1255 (1994).

    Article  CAS  PubMed  Google Scholar 

  277. Allendorfer, J. B. et al. A pilot study of combined endurance and resistance exercise rehabilitation for verbal memory and functional connectivity improvement in epilepsy. Epilepsy Behav. 96, 44–56 (2019).

    Article  PubMed  Google Scholar 

  278. Feter, N., Alt, R., Häfele, C. A., da Silva, M. C. & Rombaldi, A. J. Effect of combined physical training on cognitive function in people with epilepsy: results from a randomized controlled trial. Epilepsia 61, 1649–1658 (2020).

    Article  PubMed  Google Scholar 

  279. Stern, Y., Barnes, C. A., Grady, C., Jones, R. N. & Raz, N. Brain reserve, cognitive reserve, compensation, and maintenance: operationalization, validity, and mechanisms of cognitive resilience. Neurobiol. Aging 83, 124–129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Rzezak, P. et al. Higher IQ in juvenile myoclonic epilepsy: dodging cognitive obstacles and “masking” impairments. Epilepsy Behav. 86, 124–130 (2018).

    Article  PubMed  Google Scholar 

  281. Rzezak, P., Guimarães, C. A., Guerreiro, M. M. & Valente, K. D. The impact of intelligence on memory and executive functions of children with temporal lobe epilepsy: methodological concerns with clinical relevance. Eur. J. Paediatr. Neurol. 21, 500–506 (2017).

    Article  PubMed  Google Scholar 

  282. Reyes, A. et al. Does bilingualism increase brain or cognitive reserve in patients with temporal lobe epilepsy? Epilepsia 59, 1037–1047 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Jokeit, H. & Ebner, A. Long term effects of refractory temporal lobe epilepsy on cognitive abilities: a cross sectional study. J. Neurol. Neurosurg. Psychiatry 67, 44–50 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Witt, J. A. & Helmstaedter, C. Should cognition be screened in new-onset epilepsies? A study in 247 untreated patients. J. Neurol. 259, 1727–1731 (2012).

    Article  PubMed  Google Scholar 

  285. Helmstaedter, C. & Witt, J. A. Multifactorial etiology of interictal behavior in frontal and temporal lobe epilepsy. Epilepsia 53, 1765–1773 (2012).

    Article  PubMed  Google Scholar 

  286. Kobau, R. & DiIorio, C. Epilepsy self-management: a comparison of self-efficacy and outcome expectancy for medication adherence and lifestyle behaviors among people with epilepsy. Epilepsy Behav. 4, 217–225 (2003).

    Article  PubMed  Google Scholar 

  287. Dilorio, C. & Henry, M. Self-management in persons with epilepsy. J. Neurosci. Nurs. 27, 338–343 (1995).

    Article  CAS  PubMed  Google Scholar 

  288. Luedke, M. W. et al. Self-management of epilepsy: a systematic review. Ann. Intern. Med. 171, 117–126 (2019).

    Article  PubMed  Google Scholar 

  289. Josephson, C. B. et al. Prediction tools for psychiatric adverse effects after levetiracetam prescription. JAMA Neurol. 76, 440–446 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Zhang, C. et al. Impaired prefrontal cortex–thalamus pathway in intractable temporal lobe epilepsy with aberrant executive control function: MRI evidence. Clin. Neurophysiol. 130, 484–490 (2019).

    Article  PubMed  Google Scholar 

  291. Diao, L. et al. Abnormalities of the uncinate fasciculus correlate with executive dysfunction in patients with left temporal lobe epilepsy. Magn. Reson. Imaging 33, 544–550 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from National Institutes of Health (NIH) KL2 TR000440 (R.M.B.), NIH R01 NS097719 (R.M.B.), NIH R01 NS065838 (C.R.M.), NIH R21 NS107739 (C.R.M.), NIH T32 MH018399 (E.K.), NIH R01 NS111022 (A.F.S. and B.P.H.) and NIH F31 NS111883-01 (A.R.). The authors thank M. L. Smith for reading of a pre-submission draft.

Author information

Authors and Affiliations

Authors

Contributions

B.P.H. organized the overall structure and content of the Review and the whole team wrote targeted discipline-specific sections of the paper and all reviewed and edited the ensuing versions of the manuscript and approved the final version. The various authors contributed predominantly to different sections of the manuscript, including neuropsychology (B.P.H., R.M.B., C.R.M. and A.R.), neuroimaging (C.R.M., E.K., A.R. and B.P.H.), genetics (R.M.B.), behaviour (B.P.H., R.M.B., C.R.M. and A.R.), networks (A.F.S. and E.K.) and conceptual models (B.P.H., R.M.B., C.R.M., A.R. and E.K.).

Corresponding author

Correspondence to Bruce P. Hermann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks R. C. Scott, M. Mula and J. Wagner for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermann, B.P., Struck, A.F., Busch, R.M. et al. Neurobehavioural comorbidities of epilepsy: towards a network-based precision taxonomy. Nat Rev Neurol 17, 731–746 (2021). https://doi.org/10.1038/s41582-021-00555-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00555-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing