Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomolecular condensates in kidney physiology and disease

Abstract

The regulation and preservation of distinct intracellular and extracellular solute microenvironments is crucial for the maintenance of cellular homeostasis. In mammals, the kidneys control bodily salt and water homeostasis. Specifically, the urine-concentrating mechanism within the renal medulla causes fluctuations in extracellular osmolarity, which enables cells of the kidney to either conserve or eliminate water and electrolytes, depending on the balance between intake and loss. However, relatively little is known about the subcellular and molecular changes caused by such osmotic stresses. Advances have shown that many cells, including those of the kidney, rapidly (within seconds) and reversibly (within minutes) assemble membraneless, nano-to-microscale subcellular assemblies termed biomolecular condensates via the biophysical process of hyperosmotic phase separation (HOPS). Mechanistically, osmotic cell compression mediates changes in intracellular hydration, concentration and molecular crowding, rendering HOPS one of many related phase-separation phenomena. Osmotic stress causes numerous homo-multimeric proteins to condense, thereby affecting gene expression and cell survival. HOPS rapidly regulates specific cellular biochemical processes before appropriate protective or corrective action by broader stress response mechanisms can be initiated. Here, we broadly survey emerging evidence for, and the impact of, biomolecular condensates in nephrology, where initial concentration buffering by HOPS and its subsequent cellular escalation mechanisms are expected to have important implications for kidney physiology and disease.

Key points

  • Biomolecular condensates have a broad impact on many cell types and organs, including kidneys.

  • The physicochemistry that underlies the assembly of biomolecular condensates renders them highly reversible and switch-like, endowing them with powerful roles in cell biology.

  • Biomolecular condensates have essential roles in kidney physiology — for example, in the formation of the glomerular filtration barrier and in the hyperosmotic stress response — and in kidney pathology.

  • Hyperosmotic phase separation is a widespread cellular mechanism in kidneys, where it rapidly induces biomolecular condensates upon physiological osmotic shock.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biomolecular condensates and phase separation.
Fig. 2: Condensates versus aggregates.
Fig. 3: Condensates regulate cellular activities via selective sequestration and exclusion.
Fig. 4: Functional and mechanistic implications of condensates in kidney cells.
Fig. 5: Induction of hyperosmotic phase separation by fluctuations in osmotic pressure in the nephron.

Similar content being viewed by others

References

  1. King, L. S. & Agre, P. Pathophysiology of the aquaporin water channels. Annu. Rev. Physiol. 58, 619–648 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Lang, F. et al. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Roncal-Jimenez, C., Lanaspa, M. A., Jensen, T., Sanchez-Lozada, L. G. & Johnson, R. J. Mechanisms by which dehydration may lead to chronic kidney disease. Ann. Nutr. Metab. 66, 10–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Kamel, K. S. & Halperin, M. L. Use of urine electrolytes and urine osmolality in the clinical diagnosis of fluid, electrolytes, and acid-base disorders. Kidney Int. Rep. 6, 1211–1224 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Neuhofer, W. & Beck, F. X. Cell survival in the hostile environment of the renal medulla. Annu. Rev. Physiol. 67, 531–555 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tauber, D., Tauber, G. & Parker, R. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem. Sci. 45, 764–778 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  12. Choi, J. M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Fare, C. M., Villani, A., Drake, L. E. & Shorter, J. Higher-order organization of biomolecular condensates. Open. Biol. 11, 210137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Nandana, V. & Schrader, J. M. Roles of liquid-liquid phase separation in bacterial RNA metabolism. Curr. Opin. Microbiol. 61, 91–98 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hofweber, M. & Dormann, D. Friend or foe — post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 294, 7137–7150 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Bounedjah, O. et al. Macromolecular crowding regulates assembly of mRNA stress granules after osmotic stress: new role for compatible osmolytes. J. Biol. Chem. 287, 2446–2458 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Jalihal, A. P. et al. Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change. Mol. Cell 79, 978–990 e975 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jalihal, A. P. et al. Hyperosmotic phase separation: condensates beyond inclusions, granules and organelles. J. Biol. Chem. 296, 100044 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Cai, D. et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578–1589 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225–257 (2005).

    Article  PubMed  Google Scholar 

  22. Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R. & Parker, R. Distinct stages in stress granule assembly and disassembly. Elife 5, e18413 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, eaat5314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vilborg, A., Passarelli, M. C., Yario, T. A., Tycowski, K. T. & Steitz, J. A. Widespread inducible transcription downstream of human genes. Mol. Cell 59, 449–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosa-Mercado, N. A. & Steitz, J. A. Who let the DoGs out? — Biogenesis of stress-induced readthrough transcripts. Trends Biochem. Sci. 47, 206–217 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Yasuda, S. et al. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578, 296–300 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Olins, A. L., Gould, T. J., Boyd, L., Sarg, B. & Olins, D. E. Hyperosmotic stress: in situ chromatin phase separation. Nucleus 11, 1–18 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Watanabe, K. et al. Cells recognize osmotic stress through liquid-liquid phase separation lubricated with poly(ADP-ribose). Nat. Commun. 12, 1353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boyd-Shiwarski, C. R. et al. WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell 185, 4488–4506 e4420 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Carrettiero, D. C. et al. Stress routes clients to the proteasome via a BAG2 ubiquitin-independent degradation condensate. Nat. Commun. 13, 3074 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gao, C. et al. Hyperosmotic-stress-induced liquid-liquid phase separation of ALS-related proteins in the nucleus. Cell Rep. 40, 111086 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Strulson, C. A., Molden, R. C., Keating, C. D. & Bevilacqua, P. C. RNA catalysis through compartmentalization. Nat. Chem. 4, 941–946 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Stoeger, T., Battich, N. & Pelkmans, L. Passive noise filtering by cell compartmentalization. Cell 164, 1151–1161 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Peeples, W. & Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lewis, M. R. & Lewis, W. H. Mitochondria (and other cytoplasmic structures) in tissue cultures. Am. J. Anat. 17, 339–401 (1915).

    Article  Google Scholar 

  36. Pappenheimer, A. M. The Golgi apparatus — personal observations and a review of the literature. Anat. Rec. 11, 107–148 (1916).

    Article  Google Scholar 

  37. Palade, G. E. & Porter, K. R. Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J. Exp. Med. 100, 641–656 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dell’Angelica, E. C., Mullins, C., Caplan, S. & Bonifacino, J. S. Lysosome-related organelles. FASEB J. 14, 1265–1278 (2000).

    PubMed  Google Scholar 

  39. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dundr, M. & Misteli, T. Functional architecture in the cell nucleus. Biochem. J. 356, 297–310 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gall, J. G. The centennial of the Cajal body. Nat. Rev. Mol. Cell Biol. 4, 975–980 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Spector, D. L. & Lamond, A. I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 3, a000646–a000646 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Porter, K. R., Claude, A. & Fullam, E. F. A study of tissue culture cells by electron microscopy : methods and preliminary observations. J. Exp. Med. 81, 233–246 (1945).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Palade, G. E. A study of fixation for electron microscopy. J. Exp. Med. 95, 285–298 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  47. Berry, J., Brangwynne, C. P. & Haataja, M. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys. 81, 046601 (2018).

    Article  PubMed  Google Scholar 

  48. Gomes, E. & Shorter, J. The molecular language of membraneless organelles. J. Biol. Chem. 294, 7115–7127 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Hyman, A. A., Weber, C. A. & Julicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Pappu, R. V., Cohen, S. R., Dar, F., Farag, M. & Kar, M. Phase transitions of associative biomacromolecules. Chem. Rev. 123, 8945–8987 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife 6, e30294 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pak, C. W. et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wei, M. T. et al. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat. Chem. 9, 1118–1125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin, Y. H. & Chan, H. S. Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophys. J. 112, 2043–2046 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ruff, K. M., Roberts, S., Chilkoti, A. & Pappu, R. V. Advances in understanding stimulus-responsive phase behavior of intrinsically disordered protein polymers. J. Mol. Biol. 430, 4619–4635 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Murray, D. T. et al. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615–627 e616 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kato, M., Zhou, X. & McKnight, S. L. How do protein domains of low sequence complexity work? RNA 28, 3–15 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Banani, S. F. et al. Compositional control of phase-separated cellular bodies. Cell 166, 651–663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jain, A. & Vale, R. D. RNA phase transitions in repeat expansion disorders. Nature 546, 243–247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Langdon, E. M. & Gladfelter, A. S. Probing RNA structure in liquid-liquid phase separation using SHAPE-MaP. Methods Enzymol. 611, 67–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Mathieu, C., Pappu, R. V. & Taylor, J. P. Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science 370, 56–60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shiina, N. Liquid- and solid-like RNA granules form through specific scaffold proteins and combine into biphasic granules. J. Biol. Chem. 294, 3532–3548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rhine, K. et al. ALS/FTLD-linked mutations in FUS glycine residues cause accelerated gelation and reduced interactions with wild-type FUS. Mol. Cell 80, 666–681 e668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zwicker, D., Decker, M., Jaensch, S., Hyman, A. A. & Julicher, F. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc. Natl Acad. Sci. USA 111, E2636–E2645 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077 e1010 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Weber, S. C. & Brangwynne, C. P. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr. Biol. 25, 641–646 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Frottin, F. et al. The nucleolus functions as a phase-separated protein quality control compartment. Science 365, 342–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Wu, M. et al. lncRNA SLERT controls phase separation of FC/DFCs to facilitate Pol I transcription. Science 373, 547–555 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Galganski, L., Urbanek, M. O. & Krzyzosiak, W. J. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res. 45, 10350–10368 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hirose, T., Yamazaki, T. & Nakagawa, S. Molecular anatomy of the architectural NEAT1 noncoding RNA: the domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles. Wiley Interdiscip. Rev. RNA 10, e1545 (2019).

    Article  PubMed  Google Scholar 

  77. Luo, Y., Na, Z. & Slavoff, S. A. P-Bodies: composition, properties, and functions. Biochemistry 57, 2424–2431 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Standart, N. & Weil, D. P-Bodies: cytosolic droplets for coordinated mRNA storage. Trends Genet. 34, 612–626 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote clustering of membrane receptors. Elife 3, 1–24 (2014).

    Article  Google Scholar 

  80. Mittag, T. & Parker, R. Multiple modes of protein-protein interactions promote RNP granule assembly. J. Mol. Biol. 430, 4636–4649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Boija, A., Klein, I. A. & Young, R. A. Biomolecular condensates and cancer. Cancer Cell 39, 174–192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bouchard, J. J. et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol. Cell 72, 19–36 e18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alberti, S. & Dormann, D. Liquid-liquid phase separation in disease. Annu. Rev. Genet. 53, 171–194 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Niaki, A. G. et al. Loss of dynamic RNA interaction and aberrant phase separation induced by two distinct types of ALS/FTD-linked FUS mutations. Mol. Cell 77, e84 (2020).

    Article  Google Scholar 

  85. Ishiguro, A., Lu, J., Ozawa, D., Nagai, Y. & Ishihama, A. ALS-linked FUS mutations dysregulate G-quadruplex-dependent liquid-liquid phase separation and liquid-to-solid transition. J. Biol. Chem. 297, 101284 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Van Treeck, B. & Parker, R. Principles of stress granules revealed by imaging approaches. Cold Spring Harb. Perspect. Biol. 11, a033068 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ripin, N. & Parker, R. Are stress granules the RNA analogs of misfolded protein aggregates? RNA 28, 67–75 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Glauninger, H., Wong Hickernell, C. J., Bard, J. A. M. & Drummond, D. A. Stressful steps: progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules. Mol. Cell 82, 2544–2556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug. Discov. 21, 841–862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Conti, B. A. & Oppikofer, M. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends Pharmacol. Sci. 43, 820–837 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Kilgore, H. R. & Young, R. A. Learning the chemical grammar of biomolecular condensates. Nat. Chem. Biol. 18, 1298–1306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Riback, J. A. & Brangwynne, C. P. Can phase separation buffer cellular noise? Science 367, 364–365 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Klosin, A. et al. Phase separation provides a mechanism to reduce noise in cells. Science 367, 464–468 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Deviri, D. & Safran, S. A. Physical theory of biological noise buffering by multicomponent phase separation. Proc. Natl Acad. Sci. USA 118, e2100099118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim, Y. & Myong, S. RNA remodeling activity of DEAD box proteins tuned by protein concentration, RNA length, and ATP. Mol. Cell 63, 865–876 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rai, A. K., Chen, J. X., Selbach, M. & Pelkmans, L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 559, 211–216 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Zhou, W., Mohr, L., Maciejowski, J. & Kranzusch, P. J. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol. Cell 81, 739–755 e737 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Qian, Z. G., Huang, S. C. & Xia, X. X. Synthetic protein condensates for cellular and metabolic engineering. Nat. Chem. Biol. 18, 1330–1340 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Garneau, N. L., Wilusz, J. & Wilusz, C. J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Schoenberg, D. R. & Maquat, L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cheng, S. et al. Mammalian oocytes store mRNAs in a mitochondria-associated membraneless compartment. Science 378, eabq4835 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Roden, C. A. & Gladfelter, A. S. Design considerations for analyzing protein translation regulation by condensates. RNA 28, 88–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855 e1816 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sharp, P. A., Chakraborty, A. K., Henninger, J. E. & Young, R. A. RNA in formation and regulation of transcriptional condensates. RNA 28, 52–57 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Morin, J. A. et al. Sequence-dependent surface condensation of a pioneer transcription factor on DNA. Nat. Phys. 18, 271 (2022).

    Article  CAS  Google Scholar 

  110. Wan, L. et al. Impaired cell fate through gain-of-function mutations in a chromatin reader. Nature 577, 121–126 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Wheeler, R. J. et al. Small molecules for modulating protein driven liquid-liquid phase separation in treating neurodegenerative disease. Preprint at bioRxiv, https://doi.org/10.1101/721001 (2019).

  112. Babinchak, W. M. et al. Small molecules as potent biphasic modulators of protein liquid-liquid phase separation. Nat. Commun. 11, 5574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Risso-Ballester, J. et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 595, 596–599 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, H. et al. Phase separation of MAGI2-mediated complex underlies formation of slit diaphragm complex in glomerular filtration barrier. J. Am. Soc. Nephrol. 32, 1946–1960 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim, S., Kalappurakkal, J. M., Mayor, S. & Rosen, M. K. Phosphorylation of nephrin induces phase separated domains that move through actomyosin contraction. Mol. Biol. Cell 30, 2996–3012 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17, 428–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Asanuma, K. et al. Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat. Cell Biol. 8, 485–491 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Yu, S. M., Nissaisorakarn, P., Husain, I. & Jim, B. Proteinuric kidney diseases: a podocyte’s slit diaphragm and cytoskeleton approach. Front. Med. 5, 221 (2018).

    Article  Google Scholar 

  119. Mundel, P. et al. Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J. Cell Biol. 139, 193–204 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Falahati, H., Wu, Y., Feuerer, V., Simon, H. G. & De Camilli, P. Proximity proteomics of synaptopodin provides insight into the molecular composition of the spine apparatus of dendritic spines. Proc. Natl Acad. Sci. USA 119, e2203750119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Alexandrov, A. I. et al. Analysis of novel hyperosmotic shock response suggests ‘beads in liquid’ cytosol structure. Biol. Open 8, bio044529 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Krokowski, D. et al. Stress-induced perturbations in intracellular amino acids reprogram mRNA translation in osmoadaptation independently of the ISR. Cell Rep. 40, 111092 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mongin, A. A. & Orlov, S. N. Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology 8, 77–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Hoffmann, E. K., Lambert, I. H. & Pedersen, S. F. Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193–277 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Boyd-Shiwarski, C. R. et al. Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent. Mol. Biol. Cell 29, 499–509 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yamamoto, M., Kensler, T. W. & Motohashi, H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169–1203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ruiz, S., Pergola, P. E., Zager, R. A. & Vaziri, N. D. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 83, 1029–1041 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Soutourina, J. Transcription regulation by the mediator complex. Nat. Rev. Mol. Cell Biol. 19, 262–274 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Lu, Y. et al. Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease. Sci. Transl. Med. 12, eaba3613 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Dang, L. et al. Nuclear condensation of CDYL links histone crotonylation and cystogenesis in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 33, 1708–1725 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tan, M. et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016–1028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mi, Z. et al. cAMP-induced nuclear condensation of CRTC2 promotes transcription elongation and cystogenesis in autosomal dominant polycystic kidney disease. Adv. Sci. 9, e2104578 (2022).

    Article  Google Scholar 

  133. Harlen, K. M. & Churchman, L. S. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 18, 263–273 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Wilbertz, J. H. et al. Single-molecule imaging of mRNA localization and regulation during the integrated stress response. Mol. Cell 73, 946–958 e947 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Brocker, C., Thompson, D. C. & Vasiliou, V. The role of hyperosmotic stress in inflammation and disease. Biomol. Concepts 3, 345–364 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Morishita, K., Watanabe, K., Naguro, I. & Ichijo, H. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response. Cell Rep. 29, 112315 (2023).

    Article  Google Scholar 

  137. Naguro, I. et al. ASK3 responds to osmotic stress and regulates blood pressure by suppressing WNK1-SPAK/OSR1 signaling in the kidney. Nat. Commun. 3, 1285 (2012).

    Article  PubMed  Google Scholar 

  138. Watanabe, K., Umeda, T., Niwa, K., Naguro, I. & Ichijo, H. A PP6-ASK3 module coordinates the bidirectional cell volume regulation under osmotic stress. Cell Rep. 22, 2809–2817 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Takayama, S., Xie, Z. & Reed, J. C. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J. Biol. Chem. 274, 781–786 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Rauch, J. N. & Gestwicki, J. E. Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. J. Biol. Chem. 289, 1402–1414 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Furusho, T., Uchida, S. & Sohara, E. The WNK signaling pathway and salt-sensitive hypertension. Hypertens. Res. 43, 733–743 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Chu, X. et al. Prediction of liquid-liquid phase separating proteins using machine learning. BMC Bioinforma. 23, 72 (2022).

    Article  CAS  Google Scholar 

  143. Li, F. et al. Kidney cancer biomarkers and targets for therapeutics: survivin (BIRC5), XIAP, MCL-1, HIF1alpha, HIF2alpha, NRF2, MDM2, MDM4, p53, KRAS and AKT in renal cell carcinoma. J. Exp. Clin. Cancer Res. 40, 254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tang, C. et al. P53 in kidney injury and repair: mechanism and therapeutic potentials. Pharmacol. Ther. 195, 5–12 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Dos Santos, H. G., Nunez-Castilla, J. & Siltberg-Liberles, J. Functional diversification after gene duplication: paralog specific regions of structural disorder and phosphorylation in p53, p63, and p73. PLoS ONE 11, e0151961 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhang, Y., Young, A., Zhang, J. & Chen, X. P73 tumor suppressor and its targets, p21 and PUMA, are required for Madin-Darby canine kidney cell morphogenesis by maintaining an appropriate level of epithelial to mesenchymal transition. Oncotarget 6, 13994–14004 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Pereira, H. S., Soares Lima, S. C., de Faria, P. S., Cardoso, L. C. & Seuanez, H. N. RPS6KA4/MIR1237 and AURKC promoter regions are differentially methylated in Wilms’ tumor. Front. Biosci. 10, 143–154 (2018).

    Article  Google Scholar 

  148. Seoane, B. & Carbone, A. The complexity of protein interactions unravelled from structural disorder. PLoS Comput. Biol. 17, e1008546 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shen, S. S., Truong, L. D., Scarpelli, M. & Lopez-Beltran, A. Role of immunohistochemistry in diagnosing renal neoplasms: when is it really useful? Arch. Pathol. Lab. Med. 136, 410–417 (2012).

    Article  PubMed  Google Scholar 

  150. Natan, E. & Joerger, A. C. Structure and kinetic stability of the p63 tetramerization domain. J. Mol. Biol. 415, 503–513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lu, J. et al. Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex. PLoS ONE 4, e5577 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Sathyan, K. M., Shen, Z., Tripathi, V., Prasanth, K. V. & Prasanth, S. G. A BEN-domain-containing protein associates with heterochromatin and represses transcription. J. Cell Sci. 124, 3149–3163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Unoki, M. et al. Lysyl 5-hydroxylation, a novel histone modification, by Jumonji domain containing 6 (JMJD6). J. Biol. Chem. 288, 6053–6062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang, C. et al. Epigenome screening highlights that JMJD6 confers an epigenetic vulnerability and mediates sunitinib sensitivity in renal cell carcinoma. Clin. Transl. Med. 11, e328 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tsai, W. C., Reineke, L. C., Jain, A., Jung, S. Y. & Lloyd, R. E. Histone arginine demethylase JMJD6 is linked to stress granule assembly through demethylation of the stress granule-nucleating protein G3BP1. J. Biol. Chem. 292, 18886–18896 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Han, G. et al. The hydroxylation activity of Jmjd6 is required for its homo-oligomerization. J. Cell. Biochem. 113, 1663–1670 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Bozic, M. et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat. Commun. 11, 1943 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Theillet, F. X. et al. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530, 45–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Burre, J., Sharma, M. & Sudhof, T. C. Cell biology and pathophysiology of α-synuclein. Cold Spring Harb. Perspect. Med. 8, a024091 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Harshman, L. A. & Brophy, P. D. PAX2 in human kidney malformations and disease. Pediatr. Nephrol. 27, 1265–1275 (2012).

    Article  PubMed  Google Scholar 

  162. Laszczyk, A. M. et al. Pax2 and Pax8 proteins regulate urea transporters and aquaporins to control urine concentration in the adult kidney. J. Am. Soc. Nephrol. 31, 1212–1225 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Katt, W. P., Lukey, M. J. & Cerione, R. A. A tale of two glutaminases: homologous enzymes with distinct roles in tumorigenesis. Future Med. Chem. 9, 223–243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zimmermann, S. C., Duvall, B. & Tsukamoto, T. Recent progress in the discovery of allosteric inhibitors of kidney-type glutaminase. J. Med. Chem. 62, 46–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Gameiro, P. A. et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 17, 372–385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Shroff, E. H. et al. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism. Proc. Natl Acad. Sci. USA 112, 6539–6544 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cassago, A. et al. Mitochondrial localization and structure-based phosphate activation mechanism of glutaminase C with implications for cancer metabolism. Proc. Natl Acad. Sci. USA 109, 1092–1097 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Thangavelu, K. et al. Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism. Proc. Natl Acad. Sci. USA 109, 7705–7710 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Narkewicz, M. R., Moores, R. R. Jr., Battaglia, F. C. & Frerman, F. F. Ontogeny of serine hydroxymethyltransferase isoenzymes in fetal sheep liver, kidney, and placenta. Mol. Genet. Metab. 68, 473–480 (1999).

    Article  CAS  PubMed  Google Scholar 

  170. Renwick, S. B., Snell, K. & Baumann, U. The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy. Structure 6, 1105–1116 (1998).

    Article  CAS  PubMed  Google Scholar 

  171. Giardina, G. et al. How pyridoxal 5’-phosphate differentially regulates human cytosolic and mitochondrial serine hydroxymethyltransferase oligomeric state. FEBS J. 282, 1225–1241 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Hsu, L. C., Chang, W. C., Hiraoka, L. & Hsieh, C. L. Molecular cloning, genomic organization, and chromosomal localization of an additional human aldehyde dehydrogenase gene, ALDH6. Genomics 24, 333–341 (1994).

    Article  CAS  PubMed  Google Scholar 

  173. Marlier, A. & Gilbert, T. Expression of retinoic acid-synthesizing and -metabolizing enzymes during nephrogenesis in the rat. Gene Expr. Patterns 5, 179–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Moretti, A. et al. Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid. Sci. Rep. 6, 35710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Marneros, A. G. AP-2β/KCTD1 control distal nephron differentiation and protect against renal fibrosis. Dev. Cell 54, 348–366 e345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kumar, S. et al. Standardized, systemic phenotypic analysis reveals kidney dysfunction as main alteration of Kctd1 (I27N) mutant mice. J. Biomed. Sci. 24, 57 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Ding, X. F. et al. Characterization and expression of a human KCTD1 gene containing the BTB domain, which mediates transcriptional repression and homomeric interactions. DNA Cell Biol. 27, 257–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Kubo, T., Wada, T., Yamaguchi, Y., Shimizu, A. & Handa, H. Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3’-UTRs. Nucleic Acids Res. 34, 6264–6271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Yang, Q., Coseno, M., Gilmartin, G. M. & Doublie, S. Crystal structure of a human cleavage factor CFIm25/CFIm68/RNA complex provides an insight into poly(A) site recognition and RNA looping. Structure 19, 368–377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. El Kares, R. et al. A human ALDH1A2 gene variant is associated with increased newborn kidney size and serum retinoic acid. Kidney Int. 78, 96–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Li, Y. et al. Inhibition of GSK3 represses the expression of retinoic acid synthetic enzyme ALDH1A2 via Wnt/β-Catenin signaling in WiT49 cells. Front. Cell Dev. Biol. 8, 94 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Chen, Y. et al. Structural basis of ALDH1A2 inhibition by irreversible and reversible small molecule inhibitors. ACS Chem. Biol. 13, 582–590 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lin, S. W., Chen, J. C., Hsu, L. C., Hsieh, C. L. & Yoshida, A. Human γ-aminobutyraldehyde dehydrogenase (ALDH9): cDNA sequence, genomic organization, polymorphism, chromosomal localization, and tissue expression. Genomics 34, 376–380 (1996).

    Article  CAS  PubMed  Google Scholar 

  184. Izaguirre, G., Kikonyogo, A. & Pietruszko, R. Tissue distribution of human aldehyde dehydrogenase E3 (ALDH9): comparison of enzyme activity with E3 protein and mRNA distribution. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 118, 59–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  185. Koncitikova, R. et al. Kinetic and structural analysis of human ALDH9A1. Biosci. Rep. 39, BSR20190558 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Li, Q. et al. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro. Nucleic Acids Res. 48, D320–D327 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176, 419–434 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Reichheld, S. E., Muiznieks, L. D., Keeley, F. W. & Sharpe, S. Direct observation of structure and dynamics during phase separation of an elastomeric protein. Proc. Natl Acad. Sci. USA 114, E4408–E4415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Brady, J. P. et al. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl Acad. Sci. USA 114, E8194–E8203 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ahlers, J. et al. The key role of solvent in condensation: mapping water in liquid-liquid phase-separated FUS. Biophys. J. 120, 1266–1275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Forman-Kay, J. D., Ditlev, J. A., Nosella, M. L. & Lee, H. O. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates? RNA 28, 36–47 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Franklin, J. M. & Guan, K. L. YAP/TAZ phase separation for transcription. Nat. Cell Biol. 22, 357–358 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Knepper, M. A., Saidel, G. M., Hascall, V. C. & Dwyer, T. Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. Am. J. Physiol. Renal Physiol. 284, F433–F446 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Boron, W. F. & Boulpaep, E. L. Medical Physiology, 3rd edn. (Elsevier, 2016).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussion of the content and writing of the article. G.G., E.S.S. and N.G.W. reviewed and edited the manuscript before submission. G.G. and E.S.S. performed the bulk of the background research for the article.

Corresponding author

Correspondence to Nils G. Walter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Hidenori Ichijo, who co-reviewed with Isao Naguro, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

UniProt: https://www.uniprot.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Sumrall, E.S., Pitchiaya, S. et al. Biomolecular condensates in kidney physiology and disease. Nat Rev Nephrol 19, 756–770 (2023). https://doi.org/10.1038/s41581-023-00767-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-023-00767-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing