Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Staphylococcus epidermidis and its dual lifestyle in skin health and infection

Abstract

The coagulase-negative bacterium Staphylococcus epidermidis is a member of the human skin microbiota. S. epidermidis is not merely a passive resident on skin but actively primes the cutaneous immune response, maintains skin homeostasis and prevents opportunistic pathogens from causing disease via colonization resistance. However, it is now appreciated that S. epidermidis and its interactions with the host exist on a spectrum of potential pathogenicity derived from its high strain-level heterogeneity. S. epidermidis is the most common cause of implant-associated infections and is a canonical opportunistic biofilm former. Additional emerging evidence suggests that some strains of S. epidermidis may contribute to the pathogenesis of common skin diseases. Here, we highlight new developments in our understanding of S. epidermidis strain diversity, skin colonization dynamics and its multifaceted interactions with the host and other members of the skin microbiota.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The commensal lifestyle of Staphylococcus epidermidis.
Fig. 2: Staphylococcus epidermidis adhesion and biofilm formation.
Fig. 3: Staphylococcus epidermidis mediates skin homeostasis, barrier repair after injury and colonization resistance.
Fig. 4: Staphylococcus epidermidis competes with Cutibacterium acnes in the hair follicle.

Similar content being viewed by others

References

  1. Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).

    Article  CAS  Google Scholar 

  2. Gallo, R. L. Human skin is the largest epithelial surface for interaction with microbes. J. Invest. Dermatol. 137, 1213–1214 (2017). This perspective highlights the previously underappreciated large surface area of skin.

    Article  CAS  Google Scholar 

  3. Bay, L. et al. Universal dermal microbiome in human skin. mBio 11, e02945-19 (2020).

    Article  Google Scholar 

  4. Nakatsuji, T. et al. The microbiome extends to subepidermal compartments of normal skin. Nat. Commun. 4, 1431 (2013).

    Article  Google Scholar 

  5. Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

    Article  CAS  Google Scholar 

  6. Naik, S. et al. The microbiome in patients with atopic dermatitis. J. Allergy Clin. Immunol. 143, 26–35 (2018).

    Google Scholar 

  7. Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012).

    Article  CAS  Google Scholar 

  8. Meisel, J. S. et al. Commensal microbiota modulate gene expression in the skin. Microbiome 6, 20 (2018).

    Article  Google Scholar 

  9. Leshem, A., Liwinski, T. & Elinav, E. Immune–microbiota interplay and colonization resistance in infection. Mol. Cell 78, 597–613 (2020).

    Article  CAS  Google Scholar 

  10. Parlet, C. P., Brown, M. M. & Horswill, A. R. Commensal staphylococci influence Staphylococcus aureus skin colonization and disease. Trends Microbiol. 27, 497–507 (2019).

    Article  CAS  Google Scholar 

  11. Del Rosso, J., Zeichner, J., Alexis, A., Cohen, D. & Berson, D. Understanding the epidermal barrier in healthy and compromised skin: clinically relevant information for the dermatology practitioner. J. Clin. Aesthet. Dermatol. 9, 2–8 (2011).

    Google Scholar 

  12. Kloos, W. E. & Schleifer, K. H. Isolation and characterization of staphylococci from human skin. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int. J. Syst. Bacteriol. 25, 62–79 (1975).

    Article  CAS  Google Scholar 

  13. Becker, K., Heilmann, C. & Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 27, 870–926 (2014).

    Article  Google Scholar 

  14. Fleer, A. & Verhoef, J. New aspects of staphylococcal infections: emergence of coagulase-negative staphylococci as pathogens. Antonie van Leeuwenhoek 50, 72–744 (1984).

    Article  Google Scholar 

  15. Rendboe, A. K. et al. The epidome — a species-specific approach to assess the population structure and heterogeneity of Staphylococcus epidermidis colonization and infection. BMC Microbiol. 20, 362 (2020).

    Article  CAS  Google Scholar 

  16. Lamers, R. P. et al. Phylogenetic relationships among Staphylococcus species and refinement of cluster groups based on multilocus data. BMC Evol. Biol. 12, 171 (2012).

    Article  Google Scholar 

  17. Brown, M. M. & Horswill, A. R. Staphylococcus epidermidis — skin friend or foe? PloS Pathog. 16, e1009026 (2020).

    Article  CAS  Google Scholar 

  18. Otto, M. Staphylococcus epidermidis — the ‘accidental’ pathogen. Nat. Rev. Microbiol. 7, 555–567 (2009).

    Article  CAS  Google Scholar 

  19. Milisavljevic, V. et al. Genetic relatedness of Staphylococcus epidermidis from infected infants and staff in the neonatal intensive care unit. Am. J. Infect. Control. 33, 341–347 (2005).

    Article  Google Scholar 

  20. Vuong, C. & Otto, M. Staphylococcus epidermidis infections. Microbes Infect. 4, 481–489 (2002).

    Article  Google Scholar 

  21. Oliveira, W. F. et al. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J. Hosp. Infect. 98, 111–117 (2018).

    Article  CAS  Google Scholar 

  22. Lee, J. Y. H. et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat. Microbiol. 3, 1175–1185 (2018).

    Article  CAS  Google Scholar 

  23. Nakatsuji, T., Cheng, J. Y. & Gallo, R. L. Mechanisms for control of skin immune function by the microbiome. Curr. Opin. Immunol. 72, 324–330 (2021).

    Article  CAS  Google Scholar 

  24. Nakatsuji, T. et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat. Med. 27, 700–709 (2021). This study demonstrates the utility of commensal staphylococci as ‘biotherapeutics’ for the common skin ailment atopic dermatitis.

    Article  CAS  Google Scholar 

  25. Chen, Y. E., Fischbach, M. A. & Belkaid, Y. Skin microbiota–host interactions. Nature 533, 427–436 (2018).

    Article  Google Scholar 

  26. Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    Article  CAS  Google Scholar 

  27. Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).

    Article  CAS  Google Scholar 

  28. Oh, J. et al. Temporal stability of the human skin microbiome. Cell 165, 854–866 (2016).

    Article  CAS  Google Scholar 

  29. Kong, H. H. et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22, 850–859 (2012).

    Article  CAS  Google Scholar 

  30. Foster, T. J. Surface proteins of Staphylococcus epidermidis. Front. Microbiol. 11, 1829 (2020).

    Article  Google Scholar 

  31. Roy, P., Horswill, A. R. & Fey, P. D. Glycan-dependent corneocyte adherence of Staphylococcus epidermidis mediated by the lectin subdomain of Aap. mBio 12, e02908–e02920 (2021). This study identifies the specific proteinaceous interaction between S. epidermidis Aap and human corneocytes necessary for colonization of the stratum corneum.

    Article  CAS  Google Scholar 

  32. Macintosh, R. L. et al. The terminal A domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes. J. Bacteriol. 191, 7007–7016 (2009).

    Article  CAS  Google Scholar 

  33. Foster, T. J. The MSCRAMM family of cell-wall-anchored surface proteins of Gram-positive cocci. Trends Microbiol. 27, 927–941 (2019).

    Article  CAS  Google Scholar 

  34. Trivedi, S. et al. The surface protein SdrF mediates Staphylococcus epidermidis adherence to keratin. J. Infect. Dis. 215, 1846–1854 (2017).

    Article  CAS  Google Scholar 

  35. Mccrea, K. W. et al. The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology 146, 1535–1546 (2000).

    Article  CAS  Google Scholar 

  36. Büttner, H. et al. A giant extracellular matrix binding protein of Staphylococcus epidermidis binds surface-immobilized fibronectin via a novel mechanism. mBio 11, e01612–e01620 (2020).

    Article  Google Scholar 

  37. Hussain, M., Heilmann, C., Peters, G. & Herrmann, M. Teichoic acid enhances adhesion of Staphylococcus epidermidis to immobilized fibronectin. Microb. Pathog. 31, 261–270 (2001).

    Article  CAS  Google Scholar 

  38. Leech, J. M. et al. Toxin-triggered interleukin-1 receptor signaling enables early-life discrimination of pathogenic versus commensal skin bacteria. Cell Host Microbe 26, 1–15 (2019).

    Article  Google Scholar 

  39. Ali, N. & Rosenblum, M. D. Regulatory T cells in skin. Immunology 152, 372–381 (2017).

    Article  CAS  Google Scholar 

  40. Scharschmidt, T. C. et al. Commensal microbes and hair follicle morphogenesis coordinately drive Treg migration into neonatal skin. Cell Host Microbe 21, 467–477.e5 (2017).

    Article  CAS  Google Scholar 

  41. Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019). This study identifies that crosstalk between non-classical immune cells and the microbiota is important for tissue development and wound healing.

    Article  CAS  Google Scholar 

  42. Naik, S. et al. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015).

    Article  CAS  Google Scholar 

  43. Linehan, J. L. et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172, 784–796.e18 (2018).

    Article  CAS  Google Scholar 

  44. Volz, T. et al. Induction of IL-10-balanced immune profiles following exposure to LTA from Staphylococcus epidermidis. Exp. Dermatol. 27, 318–326 (2018).

    Article  CAS  Google Scholar 

  45. Uberoi, A. et al. Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. Cell Host Microbe 29, 1235–1248 (2021). This study demonstrates that a defined microbial consortia was sufficient to regulate skin barrier integrity and repair.

    Article  CAS  Google Scholar 

  46. Zheng, Y. et al. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe 30, 1–13 (2022). This study identifies a specific S. epidermidis molecular product that protects skin from dehydration.

    Article  Google Scholar 

  47. Di Domizio, J. et al. The commensal skin microbiota triggers type I IFN-dependent innate repair responses in injured skin. Nat. Immunol. 21, 1034–1045 (2020).

    Article  Google Scholar 

  48. Harrison, O. J. et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 363, eaat6280 (2019).

    Article  CAS  Google Scholar 

  49. Belmesk, L. et al. Prominent role of type 2 immunity in skin diseases — beyond atopic dermatitis. J. Cutan. Med. Surg. 26, 33–49 (2021).

    Article  Google Scholar 

  50. Kim, J., Kim, B. E. & Leung, D. Y. M. Pathophysiology of atopic dermatitis: clinical implications. Allergy Asthma Proc. 40, 84–92 (2019).

    Article  CAS  Google Scholar 

  51. Luqman, A. et al. Trace amines produced by skin bacteria accelerate wound healing in mice. Commun. Biol. 3, 277 (2020).

    Article  CAS  Google Scholar 

  52. Nakatsuji, T. et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci. Adv. 4, eaao4502 (2018).

    Article  Google Scholar 

  53. Keshari, S. et al. Butyric acid from probiotic Staphylococcus epidermidis in the skin microbiome down-regulates the ultraviolet-induced pro-inflammatory IL-6 cytokine via short-chain fatty acid receptor. Int. J. Mol. Sci. 20, 4477 (2019).

    Article  CAS  Google Scholar 

  54. Li, D. et al. Lipopeptide 78 from Staphylococcus epidermidis activates β-catenin to inhibit skin inflammation. J. Immunol. 202, 1219–1228 (2019).

    Article  CAS  Google Scholar 

  55. Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat. Med. 12, 1377–1382 (2009).

    Article  Google Scholar 

  56. García-Gómez, E. et al. Staphylococcus epidermidis lipoteichoic acid: exocellular release and ltaS gene expression in clinical and commensal isolates. J. Med. Microbiol. 66, 864–873 (2017).

    Article  Google Scholar 

  57. Hersh, A. L., Chambers, H. F., Maselli, J. H. & Gonzales, R. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch. Intern. Med. 168, 1585–1591 (2008).

    Article  Google Scholar 

  58. Craft, K. M., Nguyen, J. M., Berg, L. J. & Townsend, S. D. Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. Medchemcomm 10, 1231–1241 (2019).

    Article  CAS  Google Scholar 

  59. Wanke, I. et al. Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J. Invest. Dermatol. 131, 382–390 (2011).

    Article  CAS  Google Scholar 

  60. Bitschar, K. et al. Staphylococcus aureus skin colonization is enhanced by the interaction of neutrophil extracellular traps with keratinocytes. J. Invest. Dermatol. 140, 1054–1065.e4 (2020).

    Article  CAS  Google Scholar 

  61. Rademacher, F. et al. Staphylococcus epidermidis activates aryl hydrocarbon receptor signaling in human keratinocytes: implications for cutaneous defense. J. Innate Immun. 11, 125–135 (2019).

    Article  CAS  Google Scholar 

  62. Burian, M., Bitschar, K., Dylus, B., Peschel, A. & Schittek, B. The protective effect of microbiota on S. aureus skin colonization depends on the integrity of the epithelial barrier. J. Invest. Dermatol. 137, 976–979 (2017). This short report demonstrates the dual importance of S. epidermidis colonization and barrier integrity in resisting S. aureus skin colonization.

    Article  CAS  Google Scholar 

  63. Peschel, A. & Otto, M. Phenol-soluble modulins and staphylococcal infection. Nat. Rev. Microbiol. 11, 667–673 (2013).

    Article  CAS  Google Scholar 

  64. Cogen, A. L. et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol. 130, 192–200 (2010).

    Article  CAS  Google Scholar 

  65. Cogen, A. L. et al. Staphylococcus epidermidis antimicrobial δ-toxin (phenol-soluble modulin-γ) cooperates with host antimicrobial peptides to kill group A Streptococcus. PloS ONE 5, e8557 (2010).

    Article  Google Scholar 

  66. Williams, M. R. et al. Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis. Sci. Transl Med. 11, eaat8329 (2019).

    Article  CAS  Google Scholar 

  67. Byrd, A. L. et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl Med. 9, eaal4651 (2017). This study is one of the first to identify that S. epidermidis, akin to S. aureus, can expand in some lesional atopic dermatitis sites.

    Article  Google Scholar 

  68. Saxena, R. et al. Comparison of healthy and dandruff scalp microbiome reveals the role of commensals in scalp health. Front. Cell. Infect. Microbiol. 8, 364 (2018).

    Article  Google Scholar 

  69. Xu, Z. et al. Dandruff is associated with the conjoined interactions between host and microorganisms. Sci. Rep. 6, 24877 (2016).

    Article  CAS  Google Scholar 

  70. Sanders, M. G. H., Nijsten, T., Verlouw, J., Kraaij, R. & Pardo, L. M. Composition of cutaneous bacterial microbiome in seborrheic dermatitis patients: a cross-sectional study. PloS ONE 16, e0251136 (2021).

    Article  CAS  Google Scholar 

  71. Tanaka, A. et al. Comprehensive pyrosequencing analysis of the bacterial microbiota of the skin of patients with seborrheic dermatitis. Microbiol. Immunol. 60, 521–526 (2016).

    Article  CAS  Google Scholar 

  72. Woo, Y. R., Lee, S. H., Cho, S. H., Lee, J. D. & Kim, H. S. Characterization and analysis of the skin microbiota in rosacea: impact of systemic antibiotics. J. Clin. Med. 9, 185 (2020).

    Article  CAS  Google Scholar 

  73. Holmes, A. D. Potential role of microorganisms in the pathogenesis of rosacea. J. Am. Acad. Dermatol. 69, 1025–1032 (2013).

    Article  Google Scholar 

  74. Kim, H. S. Microbiota in rosacea. Am. J. Clin. Dermatol. 21, 25–35 (2020).

    Article  Google Scholar 

  75. Schilcher, K. & Horswill, A. R. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol. Mol. Biol. Rev. 84, e00026-19 (2020).

    Article  Google Scholar 

  76. Joubert, I. A., Otto, M., Strunk, T. & Currie, A. J. Look who’s talking: host and pathogen drivers of Staphylococcus epidermidis virulence in neonatal sepsis. Int. J. Mol. Sci. 23, 860 (2022).

    Article  CAS  Google Scholar 

  77. Both, A. et al. Distinct clonal lineages and within-host diversification shape invasive Staphylococcus epidermidis populations. PloS Pathog. 17, e1009304 (2021). This study utilizes patient-matched isolates to demonstrate S. epidermidis genetic flexibility and adaptation to various environments.

    Article  CAS  Google Scholar 

  78. Miragaia, M., Thomas, J. C., Couto, I., Enright, M. C. & De Lencastre, H. Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J. Bacteriol. 189, 2540–2552 (2007).

    Article  CAS  Google Scholar 

  79. Mendes, R. E., Deshpande, L. M., Costello, A. J. & Farrell, D. J. Molecular epidemiology of Staphylococcus epidermidis clinical isolates from US hospitals. Antimicrob. Agents Chemother. 56, 4656–4661 (2012).

    Article  CAS  Google Scholar 

  80. Conlan, S. et al. Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biol. 13, R64 (2012). This study increases the number of publicly available S. epidermidis draft genomes and highlights genetic differences between commensal and nosocomial isolates.

    Article  Google Scholar 

  81. Du, X. et al. Staphylococcus epidermidis clones express Staphylococcus aureus-type wall teichoic acid to shift from a commensal to pathogen lifestyle. Nat. Microbiol. 6, 757–768 (2021).

    Article  CAS  Google Scholar 

  82. Fišarová, L. et al. Staphylococcus epidermidis phages transduce antimicrobial resistance plasmids and mobilize chromosomal islands. mSphere 6, e00223-21 (2021).

    Article  Google Scholar 

  83. Thakuria, B. & Lahon, K. The β-lactam antibiotics as an empirical therapy in a developing country: an update on their current status and recommendations to counter the resistance against them. J. Clin. Diagn. Res. 7, 1207–1214 (2013).

    Google Scholar 

  84. Ray, M. D., Boundy, S. & Archer, G. L. Transfer of the methicillin resistance genomic island among staphylococci by conjugation. Mol. Microbiol. 100, 675–685 (2016).

    Article  CAS  Google Scholar 

  85. Krediet, T. G. et al. Molecular epidemiology of coagulase-negative staphylococci causing sepsis in a neonatal intensive care unit over an 11-year period. J. Clin. Microbiol. 42, 992–995 (2004).

    Article  CAS  Google Scholar 

  86. Månsson, E. et al. Methicillin-resistant Staphylococcus epidermidis lineages in the nasal and skin microbiota of patients planned for arthroplasty surgery. Microorganisms 9, 1–14 (2021).

    Article  Google Scholar 

  87. Mé Ric, G. et al. Ecological overlap and horizontal gene transfer in Staphylococcus aureus and Staphylococcus epidermidis. Genome Biol. Evol. 7, 1313–1328 (2015).

    Article  Google Scholar 

  88. Datta, M. S. et al. Rapid methicillin resistance diversification in Staphylococcus epidermidis colonizing human neonates. Nat. Commun. 12, 6062 (2021).

    Article  CAS  Google Scholar 

  89. Salgueiro, V. C. et al. High rate of neonates colonized by methicillin-resistant Staphylococcus species in an intensive care unit. J. Infect. Dev. Ctries 13, 810–816 (2019).

    Article  Google Scholar 

  90. Barbier, F. et al. Methicillin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec Iva between Staphylococcus epidermidis and major clones of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 202, 270–281 (2010).

    Article  CAS  Google Scholar 

  91. Miragaia, M. et al. Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis. PloS ONE 4, e7722 (2009).

    Article  Google Scholar 

  92. Hung, W. C. et al. Skin commensal staphylococci may act as reservoir for fusidic acid resistance genes. PloS ONE 10, e0143106 (2015).

    Article  Google Scholar 

  93. Banaszkiewicz, S. et al. Genetic diversity of composite enterotoxigenic Staphylococcus epidermidis pathogenicity islands. Genome Biol. Evol. 11, 3498–3509 (2019).

    Article  CAS  Google Scholar 

  94. Argemi, X., Hansmann, Y., Prola, K. & Prévost, G. Coagulase-negative staphylococci pathogenomics. Int. J. Mol. Sci. 20, 1215 (2019).

    Article  CAS  Google Scholar 

  95. Zhou, W. et al. Host-specific evolutionary and transmission dynamics shape the functional diversification of Staphylococcus epidermidis in human skin. Cell 180, 454–470.e18 (2020). This study is the first longitudinal, multi-patient assessment of S. epidermidis strain-level diversity on healthy skin.

    Article  CAS  Google Scholar 

  96. Méric, G. et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nat. Commun. 9, 5034 (2018).

    Article  Google Scholar 

  97. Harris, S. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 466–469 (2010).

    Article  Google Scholar 

  98. Williams, M. R. et al. Interplay of staphylococcal and host proteases promotes skin barrier disruption in Netherton syndrome. Cell Rep. 30, 2923–2933.e7 (2020).

    Article  CAS  Google Scholar 

  99. Cau, L. et al. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J. Allergy Clin. Immunol. 147, 955–966.e16 (2021). This study implicates the production of the S. epidermidis EcpA protease in the disruption and exacerbation of atopic skin lesions.

    Article  CAS  Google Scholar 

  100. Otto, M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 322, 207–228 (2008).

    CAS  Google Scholar 

  101. Paharik, A. E. & Horswill, A. R. The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol. Spectr. 4, 529–566 (2016).

    Article  Google Scholar 

  102. Schaeffer, C. R. et al. Accumulation-associated protein enhances Staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model. Infect. Immun. 83, 214–226 (2015).

    Article  Google Scholar 

  103. Schaeffer, C. R. et al. Versatility of biofilm matrix molecules in Staphylococcus epidermidis clinical isolates and importance of polysaccharide intercellular adhesin expression during high shear stress. mSphere 1, e00165-16 (2016).

    Article  Google Scholar 

  104. Fey, P. D. & Olson, M. E. Current concepts in biofilm formation of Staphylococcus epidermidis. Fut. Microbiol. 5, 917–933 (2010).

    Article  CAS  Google Scholar 

  105. O’Gara, J. P. Into the storm: chasing the opportunistic pathogen Staphylococcus aureus from skin colonisation to life-threatening infections. Environ. Microbiol. 19, 3823–3833 (2017).

    Article  Google Scholar 

  106. Kozitskaya, S. et al. Clonal analysis of Staphylococcus epidermidis isolates carrying or lacking biofilm-mediating genes by multilocus sequence typing. J. Clin. Microbiol. 43, 4751–4757 (2005).

    Article  CAS  Google Scholar 

  107. Kozitskaya, S. et al. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect. Immun. 72, 1210–1215 (2004).

    Article  CAS  Google Scholar 

  108. Rogers, K. L., Rupp, M. E. & Fey, P. D. The presence of icaADBC is detrimental to the colonization of human skin by Staphylococcus epidermidis. Appl. Environ. Microbiol. 74, 6155–6157 (2008).

    Article  CAS  Google Scholar 

  109. Paharik, A. E. et al. The metalloprotease SepA governs processing of accumulation-associated protein and shapes intercellular adhesive surface properties in Staphylococcus epidermidis. Mol. Microbiol. 103, 860–874 (2017).

    Article  CAS  Google Scholar 

  110. Rohde, H. et al. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol. 55, 1883–1895 (2005).

    Article  CAS  Google Scholar 

  111. Conrady, D. G. et al. A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc. Natl Acad. Sci. USA 105, 19456–19461 (2008).

    Article  CAS  Google Scholar 

  112. Formosa-Dague, C., Speziale, P., Foster, T. J., Geoghegan, J. A. & Dufrêne, Y. F. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc. Natl Acad. Sci. USA 113, 410–415 (2016).

    Article  CAS  Google Scholar 

  113. Salava, A. & Lauerma, A. Role of the skin microbiome in atopic dermatitis. Clin. Transl Allergy 4, 1–6 (2014).

    Article  Google Scholar 

  114. Meylan, P. et al. Skin colonization by Staphylococcus aureus precedes the clinical diagnosis of atopic dermatitis in infancy. J. Invest. Dermatol. 137, 2497–2504 (2017).

    Article  CAS  Google Scholar 

  115. Allen, H. B. et al. The presence and impact of biofilm-producing staphylococci in atopic dermatitis. JAMA Dermatol. 150, 260–265 (2014).

    Article  Google Scholar 

  116. Allen, H. B., Mueller, J. L. & Herbert Allen, C. B. A novel finding in atopic dermatitis: film-producing Staphylococcus epidermidis as an etiology. Int. J. Dermatol. 50, 992–993 (2011).

    Article  Google Scholar 

  117. Gonzalez, T. et al. Biofilm propensity of Staphylococcus aureus skin isolates is associated with increased atopic dermatitis severity and barrier dysfunction in the MPAACH pediatric cohort. Allergy 76, 302–313 (2021). This work presents a clinically robust and mechanistic assessment of paediatric atopic dermatitis development and progression in a US cohort.

    Article  CAS  Google Scholar 

  118. Yarwood, J. M., Bartels, D. J., Volper, E. M. & Greenberg, E. P. Quorum sensing in Staphylococcus aureus biofilms. J. Bacteriol. 186, 1838–1850 (2004).

    Article  CAS  Google Scholar 

  119. Kavanaugh, J. S. & Horswill, A. R. Impact of environmental cues on staphylococcal quorum sensing and biofilm development. J. Biol. Chem. 291, 12556–12564 (2016).

    Article  CAS  Google Scholar 

  120. Thoendel, M., Kavanaugh, J. S., Flack, C. E. & Horswill, A. R. Peptide signaling in the staphylococci. Chem. Rev. 111, 117–151 (2011).

    Article  CAS  Google Scholar 

  121. Novick, R. P. & Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet. 42, 541–564 (2008).

    Article  CAS  Google Scholar 

  122. Yang, T., Tal-Gan, Y., Paharik, A. E., Horswill, A. R. & Blackwell, H. E. Structure–function analyses of a Staphylococcus epidermidis autoinducing peptide reveals motifs critical for AgrC-type receptor modulation. ACS Chem. Biol. 11, 1982–1991 (2016).

    Article  CAS  Google Scholar 

  123. Wright, J. S., Jin, R. & Novick, R. P. Transient interference with staphylococcal quorum sensing blocks abscess formation. Proc. Natl Acad. Sci. USA 102, 1691–1696 (2005).

    Article  CAS  Google Scholar 

  124. Nakamura, Y. et al. Staphylococcus Agr virulence is critical for epidermal colonization and associates with atopic dermatitis development. Sci. Transl Med. 12, eaay4068 (2020).

    Article  CAS  Google Scholar 

  125. Otto, M., Echner, H., Voelter, W. & Götz, F. Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69, 1957–1960 (2001).

    Article  CAS  Google Scholar 

  126. Brown, M. M. et al. Novel peptide from commensal Staphylococcus simulans blocks methicillin-resistant Staphylococcus aureus quorum sensing and protects host skin from damage. Antimicrob. Agents Chemother. 64, e00172-20 (2020).

    Article  Google Scholar 

  127. Khan, B. A., Yeh, A. J., Cheung, G. Y. & Otto, M. Investigational therapies targeting quorum-sensing for the treatment of Staphylococcus aureus infections. Expert Opin. Investig. Drugs 24, 689–704 (2015).

    Article  CAS  Google Scholar 

  128. Harraghy, N., Kerdudou, S. & Herrmann, M. Quorum-sensing systems in staphylococci as therapeutic targets. Anal. Bioanal. Chem. 387, 437–444 (2007).

    Article  CAS  Google Scholar 

  129. Olson, M. E. et al. Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization. J. Bacteriol. 196, 3482–3493 (2014).

    Article  Google Scholar 

  130. Nakatsuji, T. et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl Med. 9, eaah4680 (2017).

    Article  Google Scholar 

  131. Ebner, P. et al. Lantibiotic production is a burden for the producing staphylococci. Sci. Rep. 8, 7471 (2018).

    Article  Google Scholar 

  132. Heilbronner, S., Krismer, B., Brötz-Oesterhelt, H. & Peschel, A. The microbiome-shaping roles of bacteriocins. Nat. Rev. Microbiol. 19, 726–739 (2021).

    Article  CAS  Google Scholar 

  133. Liu, Y. et al. Skin microbiota analysis-inspired development of novel anti-infectives. Microbiome 8, 85 (2020).

    Article  CAS  Google Scholar 

  134. O’Sullivan, J. N., Rea, M. C., O’Connor, P. M., Hill, C. & Ross, R. P. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol. Ecol. 95, fiy241 (2019).

    Google Scholar 

  135. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010).

    Article  CAS  Google Scholar 

  136. Sandiford, S. & Upton, M. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against staphylococci. Antimicrob. Agents Chemother. 56, 1539–1547 (2012).

    Article  CAS  Google Scholar 

  137. Janek, D., Zipperer, A., Kulik, A., Krismer, B. & Peschel, A. High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. PloS Pathog. 12, e1005812 (2016).

    Article  Google Scholar 

  138. Ekkelenkamp, M. B. et al. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis. FEBS Lett. 579, 1917–1922 (2005).

    Article  CAS  Google Scholar 

  139. Chin, D. et al. Coagulase-negative staphylococci release a purine analog that inhibits Staphylococcus aureus virulence. Nat. Commun. 12, 1887 (2021).

    Article  CAS  Google Scholar 

  140. Claudel, J. P. et al. Staphylococcus epidermidis: a potential new player in the physiopathology of acne? Dermatology 235, 287–294 (2019).

    Article  Google Scholar 

  141. Woo, T. E. & Sibley, C. D. The emerging utility of the cutaneous microbiome in the treatment of acne and atopic dermatitis. J. Am. Acad. Dermatol. 82, 222–228 (2020).

    Article  CAS  Google Scholar 

  142. Fitz-Gibbon, S. et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J. Invest. Dermatol. 133, 2152–2160 (2013).

    Article  CAS  Google Scholar 

  143. Christensen, G. J. M. et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics 17, 152 (2016).

    Article  Google Scholar 

  144. Nakamura, K. et al. Short chain fatty acids produced by Cutibacterium acnes inhibit biofilm formation by Staphylococcus epidermidis. Sci. Rep. 10, 21237 (2020).

    Article  CAS  Google Scholar 

  145. Claesen, J. et al. A Cutibacterium acnes antibiotic modulates human skin microbiota composition in hair follicles. Sci. Transl Med. 12, 5445 (2020). This study identifies a novel antimicrobial made by C. acnes in the hair follicle to facilitate inter-bacterial competition.

    Article  Google Scholar 

  146. Wang, Y. et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl. Microbiol. Biotechnol. 98, 411–424 (2014).

    Article  CAS  Google Scholar 

  147. Wang, Y. et al. A precision microbiome approach using sucrose for selective augmentation of Staphylococcus epidermidis fermentation against Propionibacterium acnes. Int. J. Mol. Sci. 17, 1870 (2016).

    Article  Google Scholar 

  148. Xia, X. et al. Staphylococcal LTA-induced miR-143 inhibits Propionibacterium acnes-mediated inflammatory response in skin. J. Invest. Dermatol. 136, 621–630 (2016).

    Article  CAS  Google Scholar 

  149. Sakr, A., Brégeon, F., Mège, J. L., Rolain, J. M. & Blin, O. Staphylococcus aureus nasal colonization: an update on mechanisms, epidemiology, risk factors, and subsequent infections. Front. Microbiol. 9, 2419 (2018).

    Article  Google Scholar 

  150. Totté, J. E. E. et al. Prevalence and odds of Staphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br. J. Dermatol. 175, 687–695 (2016).

    Article  Google Scholar 

  151. Krismer, B., Weidenmaier, C., Zipperer, A. & Peschel, A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat. Rev. Microbiol. 15, 675–687 (2017).

    Article  CAS  Google Scholar 

  152. Oh, J., Conlan, S., Polley, E. C., Segre, J. A. & Kong, H. H. Shifts in human skin and nares microbiota of healthy children and adults. Genome Med. 4, 1–11 (2012).

    Article  Google Scholar 

  153. Liu, Q. et al. Staphylococcus epidermidis contributes to healthy maturation of the nasal microbiome by stimulating antimicrobial peptide production. Cell Host Microbe 27, 1–11 (2019).

    Google Scholar 

  154. Iwase, T. et al. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465, 346–349 (2010).

    Article  CAS  Google Scholar 

  155. Sugimoto, S. et al. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host–pathogen interaction. J. Bacteriol. 195, 1645–1655 (2013).

    Article  CAS  Google Scholar 

  156. Chen, C. et al. Secreted proteases control autolysin-mediated biofilm growth of Staphylococcus aureus. J. Biol. Chem. 288, 29440–29452 (2013).

    Article  CAS  Google Scholar 

  157. Roche, F. M., Meehan, M. & Foster, T. J. The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology (Reading) 149, 2759–2767 (2003).

    Article  CAS  Google Scholar 

  158. McLoughlin, I. J., Wright, E. M., Tagg, J. R., Jain, R. & Hale, J. D. F. Skin microbiome — the next frontier for probiotic intervention. Probiotics Antimicrob. Proteins https://doi.org/10.1007/s12602-021-09824-1 (2021).

    Article  Google Scholar 

  159. Nodake, Y. et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe — a blinded randomized clinical trial. J. Dermatol. Sci. 79, 119–126 (2015).

    Article  Google Scholar 

  160. Sakr, A., Brégeon, F., Rolain, J. M. & Blin, O. Staphylococcus aureus nasal decolonization strategies: a review. Expert Rev. Anti Infect. Ther. 17, 327–340 (2019).

    Article  CAS  Google Scholar 

  161. Dodds, D. et al. Controlling the growth of the skin commensal Staphylococcus epidermidis using d-alanine auxotrophy. mSphere 5, e00360-20 (2020).

    Article  Google Scholar 

  162. Ito, Y. et al. Staphylococcus cohnii is a potentially biotherapeutic skin commensal alleviating skin inflammation. Cell Rep. 35, 109052 (2021).

    Article  CAS  Google Scholar 

  163. Holz, C. et al. Novel bioactive from Lactobacillus brevis DSM17250 to stimulate the growth of Staphylococcus epidermidis: a pilot study. Benef. Microbes 8, 121–131 (2017).

    Article  CAS  Google Scholar 

  164. Williams, M. R. & Gallo, R. L. Evidence that human skin microbiome dysbiosis promotes atopic dermatitis. J. Invest. Dermatol. 137, 2460–2461 (2017).

    Article  CAS  Google Scholar 

  165. Myles, I. A. et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight 3, e120608 (2018).

    Article  Google Scholar 

  166. Volz, T. et al. Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-10-producing dendritic cells and regulatory Tr1 cells. J. Invest. Dermatol. 134, 96–104 (2014).

    Article  CAS  Google Scholar 

  167. Kao, M. S. et al. Microbiome precision editing: using PEG as a selective fermentation initiator against methicillin-resistant Staphylococcus aureus. Biotechnol. J. 12, 1600399 (2017).

    Article  Google Scholar 

  168. Liu-Walsh, F. et al. Prebiotic colloidal oat supports the growth of cutaneous commensal bacteria including S. epidermidis and enhances the production of lactic acid. Clin. Cosmet. Investig. Dermatol. 14, 73–82 (2021).

    Article  CAS  Google Scholar 

  169. Götz, F., Perconti, S., Popella, P., Werner, R. & Schlag, M. Epidermin and gallidermin: staphylococcal lantibiotics. Int. J. Med. Microbiol. 304, 63–71 (2014).

    Article  Google Scholar 

  170. Schoenfelder, S. M. K. et al. Success through diversity — how Staphylococcus epidermidis establishes as a nosocomial pathogen. Int. J. Med. Microbiol. 300, 380–386 (2010).

    Article  Google Scholar 

  171. Ferretti, P. et al. Experimental metagenomics and ribosomal profiling of the human skin microbiome. Exp. Dermatol. 26, 211–219 (2017).

    Article  Google Scholar 

  172. Van Rossum, T., Ferretti, P., Maistrenko, O. M. & Bork, P. Diversity within species: interpreting strains in microbiomes. Nat. Rev. Microbiol. 18, 491–506 (2020).

    Article  Google Scholar 

  173. Dengler Haunreiter, V. et al. In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance. Nat. Commun. 10, 1149 (2019).

    Article  Google Scholar 

  174. Gu, J. et al. Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J. Hosp. Infect. 61, 342–348 (2005).

    Article  CAS  Google Scholar 

  175. Lee, J. Y. H. et al. Mining the methylome reveals extensive diversity in Staphylococcus epidermidis restriction modification. mBio 10, e02451-19 (2019).

    Article  Google Scholar 

  176. Marraffini, L. & Sontheimer, E. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008).

    Article  CAS  Google Scholar 

  177. Rossi, C. C., Souza-Silva, T., Araújo-Alves, A. V. & Giambiagi-deMarval, M. CRISPR–Cas systems features and the gene-reservoir role of coagulase-negative staphylococci. Front. Microbiol. 8, 1545 (2017).

    Article  Google Scholar 

  178. Lyon, G. J. & Novick, R. P. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25, 1389–1403 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.M.S. was supported by the National Institute of Allergy and Infectious Diseases (NIAID) Ruth L. Kirschstein National Research Award Predoctoral Fellowship AI157052. A.R.H. was supported by the NIAID grants AI153185 and AI162964 and the US Department of Veteran Affairs grant BX002711.

Author information

Authors and Affiliations

Authors

Contributions

M.M.S. researched data for the article. A.R.H. and M.M.S. contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Alexander R. Horswill.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Michael Otto, Wilma Ziebuhr and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Stratum corneum

The topmost layer of the epidermis, composed of dead keratinocytes linked together in a ‘brick and mortar’ structure by extracellular lipids.

Coagulase

A polypeptide secreted by Staphylococcus aureus that promotes blood clotting and was historically used to distinguish this organism from less pathogenic coagulase-negative staphylococci (CoNS) for clinical identification.

Sortase

An enzyme that links surface proteins to the Gram-positive cell wall.

Corneocytes

Dead keratinocytes that compose the topmost layer of the epidermis.

Extracellular matrix

A structural support system within the dermal skin layer composed of various proteins including collagen and elastin.

Sphingomyelinase

A bacterial esterase, often implicated in virulence, that cleaves sphingomyelin.

Pangenome

The entire set of genes within a species, including conserved, core genes found in every strain and variable genes not conserved in every strain.

KEGG modules

Families of genes that are linked to specific cellular functions.

Phase variation

The reversible, heterogeneous switch in gene expression profiles within a clonal population of bacterial cells.

Plasmacytoid dendritic cells

(pDCs). A specialized subpopulation of dendritic cells involved in immunosurveillance and antigen recognition.

Corneodesmosomes

The major intercellular adhesives within the stratum corneum.

Netherton syndrome

A rare genetic disorder characterized by a mutation in a serine protease inhibitor that leads to severe, often life-threatening, skin abnormalities.

Bacteriocins

Ribosomally synthesized peptides made by many types of bacteria with varying mechanisms of antimicrobial activity.

Kin selection

The theory that genetic relatedness of a population of cells should lead to more cooperativity and increased fitness of that specific population.

Probiotics

Live microorganisms applied to re-regulate a dysbiotic community or actively exclude an opportunistic pathogen.

Prebiotics

Nutrients or other substrates added to alter species composition that favour select microbial growth and exclude opportunistic pathogens.

Postbiotic

Dead or otherwise inanimate bacteria or a bacterial product applied to promote skin barrier function.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severn, M.M., Horswill, A.R. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol 21, 97–111 (2023). https://doi.org/10.1038/s41579-022-00780-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00780-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology