Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Haematopoietic stem cell self-renewal in vivo and ex vivo

Abstract

The self-renewal capacity of multipotent haematopoietic stem cells (HSCs) supports blood system homeostasis throughout life and underlies the curative capacity of clinical HSC transplantation therapies. However, despite extensive characterization of the HSC state in the adult bone marrow and embryonic fetal liver, the mechanism of HSC self-renewal has remained elusive. This Review presents our current understanding of HSC self-renewal in vivo and ex vivo, and discusses important advances in ex vivo HSC expansion that are providing new biological insights and offering new therapeutic opportunities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HSC self-renewal assays.
Fig. 2: Extrinsic and intrinsic factors that regulate self-renewal in embryonic and adult haematopoiesis.
Fig. 3: Components of ex vivo HSC culture systems.

Similar content being viewed by others

References

  1. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gordon, M. Y., Lewis, J. L. & Marley, S. B. Of mice and men… and elephants. Blood 100, 4679–4680 (2002).

    CAS  PubMed  Google Scholar 

  3. Eaves, C. J. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125, 2605–2613 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Weissman, I. L. & Shizuru, J. A. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112, 3543–3553 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Seita, J. & Weissman, I. L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 640–653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Copelan, E. A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2006).

    CAS  PubMed  Google Scholar 

  7. Chabannon, C. et al. Hematopoietic stem cell transplantation in its 60s: a platform for cellular therapies. Sci. Transl. Med. 10, eaap9630 (2018).

    PubMed  Google Scholar 

  8. Pinho, S. & Frenette, P. S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20, 303–320 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Spangrude, G. J., Heimfeld, S. & Weissman, I. L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    CAS  PubMed  Google Scholar 

  10. Visser, J. W., Bauman, J. G., Mulder, A. H., Eliason, J. F. & de Leeuw, A. M. Isolation of murine pluripotent hemopoietic stem cells. J. Exp. Med. 159, 1576–1590 (1984).

    CAS  PubMed  Google Scholar 

  11. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS  PubMed  Google Scholar 

  12. Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154, 1112–1126 (2013).

    CAS  PubMed  Google Scholar 

  14. Balazs, A. B., Fabian, A. J., Esmon, C. T. & Mulligan, R. C. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107, 2317–2321 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gazit, R. et al. Fgd5 identifies hematopoietic stem cells in the murine bone marrow. J. Exp. Med. 211, 1315–1331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, J. Y. et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530, 223–227 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kataoka, K. et al. Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J. Exp. Med. 208, 2403–2416 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Acar, M. et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526, 126–130 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tajima, Y. et al. Continuous cell supply from Krt7-expressing hematopoietic stem cells during native hematopoiesis revealed by targeted in vivo gene transfer method. Sci. Rep. 7, 40684 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Notta, F. et al. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333, 218–221 (2011). This article describes the use of CD49f expression to purify human HSCs at high frequencies.

    CAS  PubMed  Google Scholar 

  21. Wilson, N. K. et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16, 712–724 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Notta, F. et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351, aab2116 (2016).

    PubMed  Google Scholar 

  23. Wilkinson, A. C. et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature 571, 117–121 (2019). This article describes a long-term ex vivo expansion culture system for mouse HSCs using PVA.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fares, I. et al. EPCR expression marks UM171-expanded CD34. Blood 129, 3344–3351 (2017).

    CAS  PubMed  Google Scholar 

  25. Tomellini, E. et al. Integrin-α3 is a functional marker of ex vivo expanded human long-term hematopoietic stem cells. Cell Rep. 28, 1063–1073 (2019).

    CAS  PubMed  Google Scholar 

  26. Till, J. E. & McCulloch, E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213–222 (1961).

    CAS  PubMed  Google Scholar 

  27. Becker, A. J., McCulloch, E. A. & Till, J. E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452–454 (1963).

    CAS  PubMed  Google Scholar 

  28. Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C. & Eaves, C. J. Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc. Natl Acad. Sci. USA 87, 8736–8740 (1990).

    CAS  PubMed  Google Scholar 

  29. Lemischka, I. R., Raulet, D. H. & Mulligan, R. C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).

    CAS  PubMed  Google Scholar 

  30. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996). This article describes the use of single-cell transplantation assays to identify self-renewing multipotent HSCs within the mouse bone marrow.

    CAS  PubMed  Google Scholar 

  31. Waterstrat, A., Liang, Y., Swiderski, C. F., Shelton, B. J. & Van Zant, G. Congenic interval of CD45/Ly-5 congenic mice contains multiple genes that may influence hematopoietic stem cell engraftment. Blood 115, 408–417 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mercier, F. E., Sykes, D. B. & Scadden, D. T. Single targeted exon mutation creates a true congenic mouse for competitive hematopoietic stem cell transplantation: the C57BL/6-CD45.1STEM mouse. Stem Cell Rep. 6, 985–992 (2016).

    CAS  Google Scholar 

  33. Yamamoto, R. et al. Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment. Cell Stem Cell 22, 600–607 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Carrelha, J. et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554, 106–111 (2018). This article provides definitive evidence for platelet-restricted self-renewing stem cells.

    CAS  PubMed  Google Scholar 

  35. Haas, S. et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17, 422–434 (2015).

    CAS  PubMed  Google Scholar 

  36. Benveniste, P. et al. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6, 48–58 (2010).

    CAS  PubMed  Google Scholar 

  37. Yamamoto, R., Wilkinson, A. C. & Nakauchi, H. Changing concepts in hematopoietic stem cells. Science 362, 895–896 (2018).

    CAS  PubMed  Google Scholar 

  38. Ema, H., Takano, H., Sudo, K. & Nakauchi, H. In vitro self-renewal division of hematopoietic stem cells. J. Exp. Med. 192, 1281–1288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gerrits, A. et al. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115, 2610–2618 (2010).

    CAS  PubMed  Google Scholar 

  40. Lu, R., Neff, N. F., Quake, S. R. & Weissman, I. L. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 29, 928–933 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Naik, S. H. et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496, 229–232 (2013).

    CAS  PubMed  Google Scholar 

  42. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014). This article describes the use of Sleeping Beauty transposon-based barcoding of HSCs and HPCs in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518, 542–546 (2015).

    CAS  PubMed  Google Scholar 

  44. Bradford, G. B., Williams, B., Rossi, R. & Bertoncello, I. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp. Hematol. 25, 445–453 (1997).

    CAS  PubMed  Google Scholar 

  45. Cheshier, S. H., Morrison, S. J., Liao, X. & Weissman, I. L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl Acad. Sci. USA 96, 3120–3125 (1999).

    CAS  PubMed  Google Scholar 

  46. Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    CAS  PubMed  Google Scholar 

  48. Yu, V. W. C. et al. Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 168, 944–945 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ganuza, M. et al. The global clonal complexity of the murine blood system declines throughout life and after serial transplantation. Blood 133, 1927–1942 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bernitz, J. M., Kim, H. S., MacArthur, B., Sieburg, H. & Moore, K. Hematopoietic stem cells count and remember self-renewal divisions. Cell 167, 1296–1309 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pei, W. et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548, 456–460 (2017). This article describes the development and validation of an in vivo Polylox barcode system that allows numerous HSCs to be barcoded and tracked during native haematopoiesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single cells. Nature 541, 107–111 (2017).

    CAS  PubMed  Google Scholar 

  53. Loeffler, D. et al. Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells. Nature 573, 426–429 (2019).

    CAS  PubMed  Google Scholar 

  54. Christodoulou, C. et al. Live-animal imaging of native haematopoietic stem and progenitor cells. Nature 578, 278–283 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kamel-Reid, S. & Dick, J. E. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 242, 1706–1709 (1988).

    CAS  PubMed  Google Scholar 

  56. Goyama, S., Wunderlich, M. & Mulloy, J. C. Xenograft models for normal and malignant stem cells. Blood 125, 2630–2640 (2015).

    CAS  PubMed  Google Scholar 

  57. Yurino, A. et al. Enhanced reconstitution of human erythropoiesis and thrombopoiesis in an immunodeficient mouse model with KitWv mutations. Stem Cell Rep. 7, 425–438 (2016).

    CAS  Google Scholar 

  58. Rahmig, S. et al. Improved human erythropoiesis and platelet formation in humanized NSGW41 mice. Stem Cell Rep. 7, 591–601 (2016).

    CAS  Google Scholar 

  59. Miller, P. H. et al. Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice. Exp. Hematol. 48, 41–49 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Takagi, S. et al. Membrane-bound human SCF/KL promotes in vivo human hematopoietic engraftment and myeloid differentiation. Blood 119, 2768–2777 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Biasco, L. et al. In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases. Cell Stem Cell 19, 107–119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Scala, S. et al. Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans. Nat. Med. 24, 1683–1690 (2018).

    CAS  PubMed  Google Scholar 

  63. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018). This work uses whole-genome sequencing to identify somatic mutations that could be used to infer lineage relationships in human haematopoiesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Morrison, S. J., Hemmati, H. D., Wandycz, A. M. & Weissman, I. L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA 92, 10302–10306 (1995).

    CAS  PubMed  Google Scholar 

  65. Ema, H. & Nakauchi, H. Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95, 2284–2288 (2000).

    CAS  PubMed  Google Scholar 

  66. Gekas, C., Dieterlen-Lièvre, F., Orkin, S. H. & Mikkola, H. K. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    CAS  PubMed  Google Scholar 

  67. de Haan, G. & Lazare, S. S. Aging of hematopoietic stem cells. Blood 131, 479–487 (2018).

    PubMed  Google Scholar 

  68. Ema, H. et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev. Cell 8, 907–914 (2005).

    CAS  PubMed  Google Scholar 

  69. Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Crane, G. M., Jeffery, E. & Morrison, S. J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573–590 (2017).

    CAS  PubMed  Google Scholar 

  71. Zhang, C. C. & Lodish, H. F. Cytokines regulating hematopoietic stem cell function. Curr. Opin. Hematol. 15, 307–311 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Edling, C. E. & Hallberg, B. c-Kit — a hematopoietic cell essential receptor tyrosine kinase. Int. J. Biochem. Cell Biol. 39, 1995–1998 (2007).

    CAS  PubMed  Google Scholar 

  73. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. de Graaf, C. A. & Metcalf, D. Thrombopoietin and hematopoietic stem cells. Cell Cycle 10, 1582–1589 (2011).

    PubMed  PubMed Central  Google Scholar 

  75. Decker, M., Leslie, J., Liu, Q. & Ding, L. Hepatic thrombopoietin is required for bone marrow hematopoietic stem cell maintenance. Science 360, 106–110 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tadokoro, Y. et al. Spred1 safeguards hematopoietic homeostasis against diet-induced systemic stress. Cell Stem Cell 22, 713–725 (2018).

    CAS  PubMed  Google Scholar 

  77. Seita, J. et al. Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction. Proc. Natl Acad. Sci. USA 104, 2349–2354 (2007).

    CAS  PubMed  Google Scholar 

  78. Takizawa, H. et al. Pathogen-induced TLR4-TRIF innate immune signaling in hematopoietic stem cells promotes proliferation but reduces competitive fitness. Cell Stem Cell 21, 225–240 (2017).

    CAS  PubMed  Google Scholar 

  79. Pietras, E. M. et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18, 607–618 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Takizawa, H. & Manz, M. G. Impact of inflammation on early hematopoiesis and the microenvironment. Int. J. Hematol. 106, 27–33 (2017).

    PubMed  Google Scholar 

  81. Pietras, E. M. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood 130, 1693–1698 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wilkinson, A. C. & Yamazaki, S. The hematopoietic stem cell diet. Int. J. Hematol. 107, 634–641 (2018).

    PubMed  Google Scholar 

  83. Cheng, C. W. et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 14, 810–823 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lazare, S. et al. Lifelong dietary intervention does not affect hematopoietic stem cell function. Exp. Hematol. 53, 26–30 (2017).

    PubMed  Google Scholar 

  85. Tang, D. et al. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. J. Exp. Med. 213, 535–553 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Taya, Y. et al. Depleting dietary valine permits nonmyeloablative mouse hematopoietic stem cell transplantation. Science 354, 1152–1155 (2016).

    CAS  PubMed  Google Scholar 

  87. Wilkinson, A. C., Morita, M., Nakauchi, H. & Yamazaki, S. Branched-chain amino acid depletion conditions bone marrow for hematopoietic stem cell transplantation avoiding amino acid imbalance-associated toxicity. Exp. Hematol. 63, 12–16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mantel, C. R. et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 161, 1553–1565 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bowie, M. B., Kent, D. G., Copley, M. R. & Eaves, C. J. Steel factor responsiveness regulates the high self-renewal phenotype of fetal hematopoietic stem cells. Blood 109, 5043–5048 (2007).

    CAS  PubMed  Google Scholar 

  90. Prashad, S. L. et al. GPI-80 defines self-renewal ability in hematopoietic stem cells during human development. Cell Stem Cell 16, 80–87 (2015).

    CAS  PubMed  Google Scholar 

  91. Chhabra, A. et al. Trophoblasts regulate the placental hematopoietic niche through PDGF-B signaling. Dev. Cell 22, 651–659 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. Jeong, M. et al. Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo. Cell. Rep. 23, 1–10 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Iwama, A. et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21, 843–851 (2004).

    CAS  PubMed  Google Scholar 

  96. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    CAS  PubMed  Google Scholar 

  97. Luis, T. C., Wilkinson, A. C., Beerman, I., Jaiswal, S. & Shlush, L. I. Biological implications of clonal hematopoiesis. Exp. Hematol. 77, 1–5 (2019).

    CAS  PubMed  Google Scholar 

  98. Calvanese, V. et al. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature 576, 281–286 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ito, K. et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350–1358 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ito, K. et al. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance. Science 354, 1156–1160 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ansó, E. et al. The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat. Cell Biol. 19, 614–625 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Ho, T. T. et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature 543, 205–210 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ito, K. Hematopoietic stem cell fate through metabolic control. Exp. Hematol. 64, 1–11 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Agathocleous, M. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549, 476–481 (2017).

    PubMed  PubMed Central  Google Scholar 

  105. Cimmino, L. et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170, 1079–1095 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wilkinson, A. C. & Gottgens, B. Transcriptional regulation of haematopoietic stem cells. Adv. Exp. Med. Biol. 786, 187–212 (2013).

    CAS  PubMed  Google Scholar 

  107. Kim, I., Saunders, T. L. & Morrison, S. J. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 130, 470–483 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. He, S., Kim, I., Lim, M. S. & Morrison, S. J. Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors. Genes. Dev. 25, 1613–1627 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhao, Y. et al. ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver. Blood 126, 2383–2391 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mochizuki-Kashio, M. et al. Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood 118, 6553–6561 (2011).

    CAS  PubMed  Google Scholar 

  111. Copley, M. R. et al. The Lin28b-let-7-Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nat. Cell Biol. 15, 916–925 (2013).

    CAS  PubMed  Google Scholar 

  112. Kumar, S. & Geiger, H. HSC niche biology and HSC expansion ex vivo. Trends Mol. Med. 23, 799–819 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Ku, H., Yonemura, Y., Kaushansky, K. & Ogawa, M. Thrombopoietin, the ligand for the Mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors of mice. Blood 87, 4544–4551 (1996).

    CAS  PubMed  Google Scholar 

  114. Sitnicka, E. et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood 87, 4998–5005 (1996).

    CAS  PubMed  Google Scholar 

  115. Ramsfjell, V. et al. Thrombopoietin, but not erythropoietin, directly stimulates multilineage growth of primitive murine bone marrow progenitor cells in synergy with early acting cytokines: distinct interactions with the ligands for c-kit and FLT3. Blood 88, 4481–4492 (1996).

    CAS  PubMed  Google Scholar 

  116. Miller, C. L. & Eaves, C. J. Expansion in vitro of adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proc. Natl Acad. Sci. USA 94, 13648–13653 (1997).

    CAS  PubMed  Google Scholar 

  117. Himburg, H. A. et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat. Med. 16, 475–482 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ieyasu, A. et al. An all-recombinant protein-based culture system specifically identifies hematopoietic stem cell maintenance factors. Stem Cell Rep. 8, 500–508 (2017).

    CAS  Google Scholar 

  119. Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Nakahara, F. et al. Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nat. Cell Biol. 21, 560–567 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bai, T. et al. Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Nat. Med. 25, 1566–1575 (2019). This article describes the novel use of zwitterionic hydrogel-based 3D cultures for expanding human HSCs ex vivo.

    CAS  PubMed  Google Scholar 

  122. Umemoto, T. et al. Integrin-αvβ3 regulates thrombopoietin-mediated maintenance of hematopoietic stem cells. Blood 119, 83–94 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39–45 (2002).

    CAS  PubMed  Google Scholar 

  124. Miharada, K., Sigurdsson, V. & Karlsson, S. Dppa5 improves hematopoietic stem cell activity by reducing endoplasmic reticulum stress. Cell Rep. 7, 1381–1392 (2014).

    CAS  PubMed  Google Scholar 

  125. Kunisato, A. et al. HES-1 preserves purified hematopoietic stem cells ex vivo and accumulates side population cells in vivo. Blood 101, 1777–1783 (2003).

    CAS  PubMed  Google Scholar 

  126. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    CAS  PubMed  Google Scholar 

  127. Boitano, A. E. et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345–1348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Fares, I. et al. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345, 1509–1512 (2014). This article describes the identification of the small molecule UM171, a potent human HSC self-renewal agonist.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Chagraoui, J. et al. UM171 induces a homeostatic inflammatory-detoxification response supporting human HSC self-renewal. PLoS ONE 14, e0224900 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun, H., Tsai, Y., Nowak, I., Liesveld, J. & Chen, Y. Eltrombopag, a thrombopoietin receptor agonist, enhances human umbilical cord blood hematopoietic stem/primitive progenitor cell expansion and promotes multi-lineage hematopoiesis. Stem Cell Res. 9, 77–86 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Nishino, T. et al. Ex vivo expansion of human hematopoietic stem cells by a small-molecule agonist of c-MPL. Exp. Hematol. 37, 1364–1377 (2009).

    CAS  PubMed  Google Scholar 

  132. Csaszar, E. et al. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell 10, 218–229 (2012).

    CAS  PubMed  Google Scholar 

  133. Francis, G. L. Albumin and mammalian cell culture: implications for biotechnology applications. Cytotechnology 62, 1–16 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wilkinson, A. C., Ishida, R., Nakauchi, H. & Yamazaki, S. Long-term ex vivo expansion of mouse hematopoietic stem cells. Nat. Protoc. 15, 628–648 (2020).

    CAS  PubMed  Google Scholar 

  135. Nishimura, T. et al. Use of polyvinyl alcohol for chimeric antigen receptor T-cell expansion. Exp. Hematol. 80, 16–20 (2019).

    CAS  PubMed  Google Scholar 

  136. Luchsinger, L. L. et al. Harnessing hematopoietic stem cell low intracellular calcium improves their maintenance in vitro. Cell Stem Cell 25, 225–240 (2019).

    CAS  PubMed  Google Scholar 

  137. Umemoto, T., Hashimoto, M., Matsumura, T., Nakamura-Ishizu, A. & Suda, T. Ca2+-mitochondria axis drives cell division in hematopoietic stem cells. J. Exp. Med. 215, 2097–2113 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kobayashi, H. et al. Environmental optimization enables maintenance of quiescent hematopoietic stem cells ex vivo. Cell Rep. 28, 145–158 (2019).

    CAS  PubMed  Google Scholar 

  139. Morgan, R. A., Gray, D., Lomova, A. & Kohn, D. B. Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell 21, 574–590 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Negrin, R. S. Graft-versus-host disease versus graft-versus-leukemia. Hematol. Am. Soc. Hematol. Educ. Program. 2015, 225–230 (2015).

    Google Scholar 

  141. Broxmeyer, H. E. Enhancing the efficacy of engraftment of cord blood for hematopoietic cell transplantation. Transfus. Apher. Sci. 54, 364–372 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Kim, Y. J. & Broxmeyer, H. E. Immune regulatory cells in umbilical cord blood and their potential roles in transplantation tolerance. Crit. Rev. Oncol. Hematol. 79, 112–126 (2011).

    PubMed  Google Scholar 

  143. Cohen, S. et al. Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1–2 safety and feasibility study. Lancet Haematol. 7, e134–e145 (2020). This recent phase I/II clinical trial report demonstrates the safety and feasibility of HSCT using ex vivo UM171-expanded umbilical cord blood HSCs.

    PubMed  Google Scholar 

  144. Wagner, J. E. et al. Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell 18, 144–155 (2016).

    CAS  PubMed  Google Scholar 

  145. de Lima, M. et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N. Engl. J. Med. 367, 2305–2315 (2012).

    PubMed  PubMed Central  Google Scholar 

  146. Dever, D. P. & Porteus, M. H. The changing landscape of gene editing in hematopoietic stem cells: a step towards Cas9 clinical translation. Curr. Opin. Hematol. 24, 481–488 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Gundry, M. C. et al. Technical considerations for the use of CRISPR/Cas9 in hematology research. Exp. Hematol. 54, 4–11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Bhattacharya, D., Rossi, D. J., Bryder, D. & Weissman, I. L. Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning. J. Exp. Med. 203, 73–85 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Shimoto, M., Sugiyama, T. & Nagasawa, T. Numerous niches for hematopoietic stem cells remain empty during homeostasis. Blood 129, 2124–2131 (2017).

    CAS  PubMed  Google Scholar 

  150. Kitao, H. & Takata, M. Fanconi anemia: a disorder defective in the DNA damage response. Int. J. Hematol. 93, 417–424 (2011).

    CAS  PubMed  Google Scholar 

  151. Evans, M. Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat. Rev. Mol. Cell Biol. 12, 680–686 (2011).

    CAS  PubMed  Google Scholar 

  152. Ivanovs, A. et al. Human haematopoietic stem cell development: from the embryo to the dish. Development 144, 2323–2337 (2017).

    CAS  PubMed  Google Scholar 

  153. Wilkinson, A. C. Hope for hematological diseases. Science 367, 1206 (2020).

    CAS  PubMed  Google Scholar 

  154. Laurenti, E. & Göttgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Haas, S., Trumpp, A. & Milsom, M. D. Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell 22, 627–638 (2018).

    CAS  PubMed  Google Scholar 

  156. Dzierzak, E. & Speck, N. A. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat. Immunol. 9, 129–136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. de Bruijn, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19, 2465–2474 (2000).

    PubMed  PubMed Central  Google Scholar 

  158. Ivanovs, A. et al. Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J. Exp. Med. 208, 2417–2427 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Ottersbach, K. & Dzierzak, E. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev. Cell 8, 377–387 (2005).

    CAS  PubMed  Google Scholar 

  160. Kumaravelu, P. et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129, 4891–4899 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.C.W. is supported by the Leukemia & Lymphoma Society (grant 3385-19) and the US National Institutes of Health (grant K99HL150218). K.J.I. is supported by the US National Science Foundation (grant 2018261442). H.N. is supported by the California Institute for Regenerative Medicine (grants LA1_C12-06917 and DISC1-10555), the US National Institutes of Health (grants R01DK116944, R01HL147124 and R21AG061487), JSPS KAKENHI Grant-in-Aid for Scientific Research, AMED Advanced Research and Development Programs for Medical Innovation (LEAP), and the Virginia and D.K. Ludwig Fund for Cancer Research. The article content is solely the responsibility of the authors and does not necessarily represent the official views of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article (researching data for the article, discussions of its content, writing the first draft and reviewing or editing of the manuscript before submission).

Corresponding author

Correspondence to Hiromitsu Nakauchi.

Ethics declarations

Competing interests

H.N. declares that he is a co-founder and shareholder in ReproCELL, Megakaryon and Century Therapeutics. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Genetics thanks G. Sauvageau, P. Frenette and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkinson, A.C., Igarashi, K.J. & Nakauchi, H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat Rev Genet 21, 541–554 (2020). https://doi.org/10.1038/s41576-020-0241-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-0241-0

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research