Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Parental nucleosome segregation and the inheritance of cellular identity

Abstract

Gene expression programmes conferring cellular identity are achieved through the organization of chromatin structures that either facilitate or impede transcription. Among the key determinants of chromatin organization are the histone modifications that correlate with a given transcriptional status and chromatin state. Until recently, the details for the segregation of nucleosomes on DNA replication and their implications in re-establishing heritable chromatin domains remained unclear. Here, we review recent findings detailing the local segregation of parental nucleosomes and highlight important advances as to how histone methyltransferases associated with the establishment of repressive chromatin domains facilitate epigenetic inheritance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histone dynamics at the eukaryotic replisome.
Fig. 2: Applications used for determining the fate of parental nucleosomes across DNA replication.
Fig. 3: Proposed mechanisms for the local segregation of parental nucleosomes in facultative late-replicating repressive chromatin.
Fig. 4: Mechanisms for potential to acquire a new cellular identity.

Similar content being viewed by others

References

  1. Waddington, C. H. The epigenotype. 1942. Int. J. Epidemiol. 41, 10–13 (2012).

    CAS  PubMed  Google Scholar 

  2. Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Allis, C. D., Caparros, M.-L., Jenuwein, T., Reinberg, D. & Lachner, M. Epigenetics (Cold Spring Harbor Laboratory Press, 2015).

  4. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    CAS  PubMed  Google Scholar 

  5. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    CAS  PubMed  Google Scholar 

  6. Luger, K., Dechassa, M. L. & Tremethick, D. J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol. 13, 436–447 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    CAS  PubMed  Google Scholar 

  8. Campos, E. I. & Reinberg, D. Histones: annotating chromatin. Annu. Rev. Genet. 43, 559–599 (2009).

    CAS  PubMed  Google Scholar 

  9. Cedar, H. & Bergman, Y. Epigenetic silencing during early lineage commitment. 2009 Apr 30. In: StemBook [Internet] (Harvard Stem Cell Institute, 2008).

  10. Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

    CAS  PubMed  Google Scholar 

  11. Palozola, K. C., Lerner, J. & Zaret, K. S. A changing paradigm of transcriptional memory propagation through mitosis. Nat. Rev. Mol. Cell Biol. 20, 55–64 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stewart-Morgan, K. R., Reveron-Gomez, N. & Groth, A. Transcription restart establishes chromatin accessibility after DNA replication. Mol. Cell 75, 284–297 e6 (2019).

    CAS  PubMed  Google Scholar 

  13. Watson, J. D. & Crick, F. H. Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967 (1953).

    CAS  PubMed  Google Scholar 

  14. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    CAS  PubMed  Google Scholar 

  15. Cedar, H. & Bergman, Y. Programming of DNA methylation patterns. Annu. Rev. Biochem. 81, 97–117 (2012).

    CAS  PubMed  Google Scholar 

  16. Li, E. & Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6, a019133 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Margueron, R. & Reinberg, D. Chromatin structure and the inheritance of epigenetic information. Nat. Rev. Genet. 11, 285–296 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gaydos, L. J., Wang, W. & Strome, S. Gene repression. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science 345, 1515–1518 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Audergon, P. N. et al. Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science 348, 132–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ragunathan, K., Jih, G. & Moazed, D. Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699 (2015). Audergon et al. (2015) and Ragunathan et al. (2015) show that ectopic recruitment of Clr4 to euchromatin leads to transcriptional repression as heterochromatin structures are established and that repression of the targeted locus was sustained even in the absence of Clr4.

    PubMed  Google Scholar 

  21. Coleman, R. T. & Struhl, G. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 356, eaai8236 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Henikoff, S. & Shilatifard, A. Histone modification: cause or cog? Trends Genet. 27, 389–396 (2011).

    CAS  PubMed  Google Scholar 

  24. Perez-Lluch, S. et al. Absence of canonical marks of active chromatin in developmentally regulated genes. Nat. Genet. 47, 1158–1167 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Reinberg, D. & Vales, L. D. Chromatin domains rich in inheritance. Science 361, 33–34 (2018).

    CAS  PubMed  Google Scholar 

  26. Grewal, S. I. & Klar, A. J. Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell 86, 95–101 (1996).

    CAS  PubMed  Google Scholar 

  27. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    CAS  PubMed  Google Scholar 

  28. Grewal, S. I. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).

    CAS  PubMed  Google Scholar 

  29. Zhang, K., Mosch, K., Fischle, W. & Grewal, S. I. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

    CAS  PubMed  Google Scholar 

  30. Muller, M. M., Fierz, B., Bittova, L., Liszczak, G. & Muir, T. W. A two-state activation mechanism controls the histone methyltransferase Suv39h1. Nat. Chem. Biol. 12, 188–193 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shinkai, Y. & Tachibana, M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 25, 781–788 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lewis, E. B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    CAS  PubMed  Google Scholar 

  33. Pelegri, F. & Lehmann, R. A role of polycomb group genes in the regulation of gap gene expression in Drosophila. Genetics 136, 1341–1353 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Beuchle, D., Struhl, G. & Muller, J. Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128, 993–1004 (2001).

    CAS  PubMed  Google Scholar 

  35. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    CAS  PubMed  Google Scholar 

  36. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    CAS  PubMed  Google Scholar 

  37. Cao, R. et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298, 1039–1043 (2002).

    CAS  PubMed  Google Scholar 

  38. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, J. R., Lee, C. H., Oksuz, O., Stafford, J. M. & Reinberg, D. PRC2 is high maintenance. Genes Dev. 33, 903–935 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hansen, K. H. et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol. 10, 1291–1300 (2008).

    CAS  PubMed  Google Scholar 

  41. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Laprell, F., Finkl, K. & Muller, J. Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA. Science 356, 85–88 (2017). Gaydos et al. (2014), Coleman and Struhl (2017) and Laprell et al. (2017) show that ectopic recruitment of PRC2 results in transcriptional repression of the locus when high levels of H3K27me3 are established and that on removal of the initiating signal, H3K27me3 levels persisted.

    CAS  PubMed  Google Scholar 

  43. Jiao, L. & Liu, X. Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science 350, aac4383 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Brooun, A. et al. Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance. Nat. Commun. 7, 11384 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Justin, N. et al. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nat. Commun. 7, 11316 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, C. H. et al. Allosteric activation dictates PRC2 activity independent of its recruitment to chromatin. Mol. Cell 70, 422–434 e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, C. H. et al. Distinct stimulatory mechanisms regulate the catalytic activity of polycomb repressive complex 2. Mol. Cell 70, 435–448 e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Loyola, A., Bonaldi, T., Roche, D., Imhof, A. & Almouzni, G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell 24, 309–316 (2006).

    CAS  PubMed  Google Scholar 

  49. Jasencakova, Z. et al. Replication stress interferes with histone recycling and predeposition marking of new histones. Mol. Cell 37, 736–743 (2010).

    CAS  PubMed  Google Scholar 

  50. Annunziato, A. T. Assembling chromatin: the long and winding road. Biochim. Biophys. Acta 1819, 196–210 (2013).

    PubMed  Google Scholar 

  51. Svikovic, S. & Sale, J. E. The effects of replication stress on S phase histone management and epigenetic memory. J. Mol. Biol. 429, 2011–2029 (2017).

    CAS  PubMed  Google Scholar 

  52. Cusick, M. E., Herman, T. M., DePamphilis, M. L. & Wassarman, P. M. Structure of chromatin at deoxyribonucleic acid replication forks: prenucleosomal deoxyribonucleic acid is rapidly excised from replicating simian virus 40 chromosomes by micrococcal nuclease. Biochemistry 20, 6648–6658 (1981).

    CAS  PubMed  Google Scholar 

  53. Herman, T. M., DePamphilis, M. L. & Wassarman, P. M. Structure of chromatin at deoxyribonucleic acid replication forks: location of the first nucleosomes on newly synthesized simian virus 40 deoxyribonucleic acid. Biochemistry 20, 621–630 (1981).

    CAS  PubMed  Google Scholar 

  54. Sogo, J. M., Stahl, H., Koller, T. & Knippers, R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189, 189–204 (1986).

    CAS  PubMed  Google Scholar 

  55. Worcel, A., Han, S. & Wong, M. L. Assembly of newly replicated chromatin. Cell 15, 969–977 (1978).

    CAS  PubMed  Google Scholar 

  56. Jackson, V. & Chalkley, R. A reevaluation of new histone deposition on replicating chromatin. J. Biol. Chem. 256, 5095–5103 (1981).

    CAS  PubMed  Google Scholar 

  57. Hake, S. B. & Allis, C. D. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc. Natl Acad. Sci. USA 103, 6428–6435 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Henikoff, S. & Smith, M. M. Histone variants and epigenetics. Cold Spring Harb. Perspect. Biol. 7, a019364 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. Talbert, P. B. & Henikoff, S. Histone variants on the move: substrates for chromatin dynamics. Nat. Rev. Mol. Cell Biol. 18, 115–126 (2017).

    CAS  PubMed  Google Scholar 

  60. Hammond, C. M., Stromme, C. B., Huang, H., Patel, D. J. & Groth, A. Histone chaperone networks shaping chromatin function. Nat. Rev. Mol. Cell Biol. 18, 141–158 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Grover, P., Asa, J. S. & Campos, E. I. H3-H4 histone chaperone pathways. Annu. Rev. Genet. 52, 109–130 (2018).

    CAS  PubMed  Google Scholar 

  62. Mendiratta, S., Gatto, A. & Almouzni, G. Histone supply: multitiered regulation ensures chromatin dynamics throughout the cell cycle. J. Cell Biol. 218, 39–54 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hansen, R. S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl Acad. Sci. USA 107, 139–144 (2010).

    CAS  PubMed  Google Scholar 

  64. Xu, M. et al. Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94–98 (2010).

    CAS  PubMed  Google Scholar 

  65. Almouzni, G. & Cedar, H. Maintenance of epigenetic information. Cold Spring Harb. Perspect. Biol. 8, a019372 (2016).

    PubMed  PubMed Central  Google Scholar 

  66. Gan, H. et al. The Mcm2-Ctf4-Polalpha axis facilitates parental histone H3-H4 transfer to lagging strands. Mol. Cell 72, 140–151 e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Petryk, N. et al. MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361, 1389–1392 (2018).

    CAS  PubMed  Google Scholar 

  68. Bellelli, R. et al. POLE3-POLE4 is a histone H3-H4 chaperone that maintains chromatin integrity during DNA replication. Mol. Cell 72, 112–126 e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu, C. et al. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361, 1386–1389 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Stewart-Morgan, K. R., Petryk, N. & Groth, A. Chromatin replication and epigenetic cell memory. Nat. Cell Biol. 22, 361–371 (2020).

    CAS  PubMed  Google Scholar 

  71. Madamba, E. V., Berthet, E. B. & Francis, N. J. Inheritance of histones H3 and H4 during DNA replication in vitro. Cell Rep. 21, 1361–1374 (2017).

    CAS  PubMed  Google Scholar 

  72. Burgers, P. M. J. & Kunkel, T. A. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86, 417–438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gruszka, D. T., Xie, S., Kimura, H. & Yardimci, H. Single-molecule imaging reveals control of parental histone recycling by free histones during DNA replication. Sci. Adv. 6, eabc0330 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Reveron-Gomez, N. et al. Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol. Cell 72, 239–249 e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schlissel, G. & Rine, J. The nucleosome core particle remembers its position through DNA replication and RNA transcription. Proc. Natl Acad. Sci. USA 116, 20605–20611 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Escobar, T. M. et al. Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication. Cell 179, 953–963 e11 (2019). This study demonstrates that parental nucleosomes are redistributed locally in repressed chromatin domains, but are dispersed in active chromatin domains, after DNA replication in mouse embryonic stem cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Clement, C. et al. High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nat. Commun. 9, 3181 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Zasadzinska, E. et al. Inheritance of CENP-A nucleosomes during DNA replication requires HJURP. Dev. Cell 47, 348–362 e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Holla, S. et al. Positioning heterochromatin at the nuclear periphery suppresses histone turnover to promote epigenetic inheritance. Cell 180, 150–164 e15 (2020).

    CAS  PubMed  Google Scholar 

  80. Harvey, Z. H., Chakravarty, A. K., Futia, R. A. & Jarosz, D. F. A prion epigenetic switch establishes an active chromatin state. Cell 180, 928–940 e14 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gruss, C., Wu, J., Koller, T. & Sogo, J. M. Disruption of the nucleosomes at the replication fork. EMBO J. 12, 4533–4545 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Groth, A. et al. Regulation of replication fork progression through histone supply and demand. Science 318, 1928–1931 (2007).

    CAS  PubMed  Google Scholar 

  83. Huang, H. et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat. Struct. Mol. Biol. 22, 618–626 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Richet, N. et al. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res. 43, 1905–1917 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. English, C. M., Maluf, N. K., Tripet, B., Churchill, M. E. & Tyler, J. K. ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA. Biochemistry 44, 13673–13682 (2005).

    CAS  PubMed  Google Scholar 

  86. English, C. M., Adkins, M. W., Carson, J. J., Churchill, M. E. & Tyler, J. K. Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446, 338–341 (2007).

    CAS  PubMed  Google Scholar 

  88. Rhind, N. & Gilbert, D. M. DNA replication timing. Cold Spring Harb. Perspect. Biol. 5, a010132 (2013).

    PubMed  PubMed Central  Google Scholar 

  89. Loyola, A. et al. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep. 10, 769–775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Quivy, J. P. et al. A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J. 23, 3516–3526 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Waddington, C. H. Organisers & Genes (Cambridge University Press, 1947).

  92. Soufi, A. & Dalton, S. Cycling through developmental decisions: how cell cycle dynamics control pluripotency, differentiation and reprogramming. Development 143, 4301–4311 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wooten, M., Ranjan, R. & Chen, X. Asymmetric histone inheritance in asymmetrically dividing stem cells. Trends Genet. 36, 30–43 (2020).

    CAS  PubMed  Google Scholar 

  94. Tran, V., Lim, C., Xie, J. & Chen, X. Asymmetric division of Drosophila male germline stem cell shows asymmetric histone distribution. Science 338, 679–682 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wooten, M. et al. Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement. Nat. Struct. Mol. Biol. 26, 732–743 (2019). Tran et al. (2012) and Wooten et al. (2019) discover that H3 and H4, but not H2A and H2B, are asymmetrically distributed when the male germline stem cell divides, such that the self-renewed germ stem cell retains parental H3 and H4, while the gonialblast committed to differentiation acquires newly synthesized H3 and H4.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Garcia Del Arco, A., Edgar, B. A. & Erhardt, S. In vivo analysis of centromeric proteins reveals a stem cell-specific asymmetry and an essential role in differentiated, non-proliferating cells. Cell Rep. 22, 1982–1993 (2018).

    CAS  PubMed  Google Scholar 

  97. Chen, X. & Zion, E. Asymmetric histone inheritance regulates stem cell fate in Drosophila midgut. Available at SSRN 3671969 (2020).

  98. Chen, X., Kahney, E. W., Sohn, L., Viets-Layng, K. & Johnston, R. Characterization of histone inheritance patterns in the Drosophila female germline. Preprint at bioRxiv https://doi.org/10.1101/2020.08.18.255455 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ma, B. et al. Differential histone distribution patterns in induced asymmetrically dividing mouse embryonic stem cells. Cell Rep. 32, 108003 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Evano, B., Khalilian, S., Le Carrou, G., Almouzni, G. & Tajbakhsh, S. Dynamics of asymmetric and symmetric divisions of muscle stem cells in vivo and on artificial niches. Cell Rep. 30, 3195–3206 e7 (2020).

    CAS  PubMed  Google Scholar 

  101. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 8, 532–538 (2006).

    CAS  PubMed  Google Scholar 

  102. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  103. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Voigt, P. et al. Asymmetrically modified nucleosomes. Cell 151, 181–193 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Voigt, P., Tee, W. W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).

    CAS  PubMed  Google Scholar 

  106. Jadhav, U. et al. Acquired tissue-specific promoter bivalency is a basis for PRC2 necessity in adult cells. Cell 165, 1389–1400 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Katan-Khaykovich, Y. & Struhl, K. Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange. Proc. Natl Acad. Sci. USA 108, 1296–1301 (2011). Xu et al. (2010) and Katan-Khaykovich and Struhl (2011) show that old (H3.1–H4)2 tetramer cores are deposited behind the replication fork without mixing old and new H3.1–H4 dimers, while a significant amount of old (H3.3–H4)2 tetramer cores split.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang, C. et al. H3.3-H4 tetramer splitting events feature cell-type specific enhancers. PLoS Genet. 9, e1003558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Prado, F., Cortes-Ledesma, F. & Aguilera, A. The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sister chromatid exchange. EMBO Rep. 5, 497–502 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Tyler, J. K. et al. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402, 555–560 (1999).

    CAS  PubMed  Google Scholar 

  111. Iida, T. & Araki, H. Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol. Cell Biol. 24, 217–227 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Tsubota, T. et al. Double-stranded DNA binding, an unusual property of DNA polymerase epsilon, promotes epigenetic silencing in Saccharomyces cerevisiae. J. Biol. Chem. 281, 32898–32908 (2006).

    CAS  PubMed  Google Scholar 

  113. Cheloufi, S. et al. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 528, 218–224 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ishiuchi, T. et al. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat. Struct. Mol. Biol. 22, 662–671 (2015).

    CAS  PubMed  Google Scholar 

  115. Gaillard, P. H. L. et al. Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair. EMBO J. 16, 6281–6289 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nabatiyan, A., Szuts, D. & Krude, T. Induction of CAF-1 expression in response to DNA strand breaks in quiescent human cells. Mol. Cell Biol. 26, 1839–1849 (2006).

    PubMed  PubMed Central  Google Scholar 

  117. Linger, J. & Tyler, J. K. The yeast histone chaperone chromatin assembly factor 1 protects against double-strand DNA-damaging agents. Genetics 171, 1513–1522 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kaufman, P. D., Kobayashi, R. & Stillman, B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 11, 345–357 (1997).

    CAS  PubMed  Google Scholar 

  119. Quivy, J. P., Gerard, A., Cook, A. J., Roche, D. & Almouzni, G. The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat. Struct. Mol. Biol. 15, 972–979 (2008).

    CAS  PubMed  Google Scholar 

  120. Huang, S., Li, X., Yusufzai, T. M., Qiu, Y. & Felsenfeld, G. USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier. Mol. Cell Biol. 27, 7991–8002 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    CAS  PubMed  Google Scholar 

  122. Wu, G. et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat. Genet. 44, 251–253 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Nacev, B. A. et al. The expanding landscape of ‘oncohistone’ mutations in human cancers. Nature 567, 473–478 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lowe, B. R., Maxham, L. A., Hamey, J. J., Wilkins, M. R. & Partridge, J. F. Histone H3 mutations: an updated view of their role in chromatin deregulation and cancer. Cancers 11, 660 (2019).

    CAS  PubMed Central  Google Scholar 

  125. Mohammad, F. & Helin, K. Oncohistones: drivers of pediatric cancers. Genes Dev. 31, 2313–2324 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Stafford, J. M. et al. Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci. Adv. 4, eaau5935 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chan, Y. S. et al. A PRC2-dependent repressive role of PRDM14 in human embryonic stem cells and induced pluripotent stem cell reprogramming. Stem Cell 31, 682–692 (2013).

    CAS  Google Scholar 

  129. Sarthy, J. F. et al. Histone deposition pathways determine the chromatin landscapes of H3.1 and H3.3 K27M oncohistones. eLife 9, e61090 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Marchal, C., Sima, J. & Gilbert, D. M. Control of DNA replication timing in the 3D genome. Nat. Rev. Mol. Cell Biol. 20, 721–737 (2019).

    CAS  PubMed  Google Scholar 

  131. Donley, N. & Thayer, M. J. DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability. Semin. Cancer Biol. 23, 80–89 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hiratani, I. & Gilbert, D. M. Replication timing as an epigenetic mark. Epigenetics 4, 93–97 (2009).

    CAS  PubMed  Google Scholar 

  133. Smith, S. & Stillman, B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58, 15–25 (1989).

    CAS  PubMed  Google Scholar 

  134. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).

    CAS  PubMed  Google Scholar 

  135. Goldberg, A. D. et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Drane, P., Ouararhni, K., Depaux, A., Shuaib, M. & Hamiche, A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev. 24, 1253–1265 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Dunleavy, E. M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137, 485–497 (2009).

    CAS  PubMed  Google Scholar 

  138. Foltz, D. R. et al. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137, 472–484 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Yang, J. et al. The histone chaperone FACT contributes to DNA replication-coupled nucleosome assembly. Cell Rep. 14, 1128–1141 (2016).

    CAS  PubMed  Google Scholar 

  140. Elgin, S. C. & Reuter, G. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. Biol. 5, a017780 (2013).

    PubMed  PubMed Central  Google Scholar 

  141. Allshire, R. C. & Ekwall, K. Epigenetic regulation of chromatin states in Schizosaccharomyces pombe. Cold Spring Harb. Perspect. Biol. 7, a018770 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. Muller, H. J. & Altenburg, E. The frequency of translocations produced by X-rays in Drosophila. Genetics 15, 283–311 (1930).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 18, 1923–1938 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. O’Carroll, D. et al. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell Biol. 20, 9423–9433 (2000).

    PubMed  PubMed Central  Google Scholar 

  145. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    CAS  PubMed  Google Scholar 

  146. Trojer, P. & Reinberg, D. Facultative heterochromatin: is there a distinctive molecular signature? Mol. Cell 28, 1–13 (2007).

    CAS  PubMed  Google Scholar 

  147. Schuettengruber, B., Bourbon, H. M., Di Croce, L. & Cavalli, G. Genome regulation by Polycomb and Trithorax: 70 years and counting. Cell 171, 34–57 (2017).

    CAS  PubMed  Google Scholar 

  148. Deal, R. B., Henikoff, J. G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Alabert, C. et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat. Cell Biol. 16, 281–293 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Alabert, C. et al. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev. 29, 585–590 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  152. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    CAS  PubMed  Google Scholar 

  153. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).

    CAS  PubMed  Google Scholar 

  154. Dean, K. M. & Palmer, A. E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10, 512–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Saavedra, F. et al. JMJD1B, a novel player in histone H3 and H4 processing to ensure genome stability. Epigenetics Chromatin 13, 6 (2020).

    PubMed  PubMed Central  Google Scholar 

  156. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, X. et al. In situ capture of chromatin interactions by biotinylated dCas9. Cell 170, 1028–1043 e19 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Myers, S. A. et al. Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. Nat. Methods 15, 437–439 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Gao, X. D. et al. C-BERST: defining subnuclear proteomic landscapes at genomic elements with dCas9-APEX2. Nat. Methods 15, 433–436 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank L. Vales for discussion and revision of the manuscript. They also thank K. J. Armache for revision of the manuscript. This work was performed during a sabbatical of A.L. in the laboratory of D.R., New York University Langone Health. T.M.E. is supported by US National Cancer Institute NIH grant 3R01CA199652-14S1. A.L. is supported by grants from Comisión Nacional de Investigación Científica y Tecnológica (FONDECYT 1200577 and Programa de Apoyo a Centros con Financiamiento Basal AFB170004) of Chile. D.R. is supported by the Howard Hughes Medical Institute and the National Cancer Institute (NIH 9R01CA199652-13A1 grant).

Author information

Authors and Affiliations

Authors

Contributions

T.M.E. and A.L. wrote the manuscript. All authors substantially contributed to the discussion of content and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Danny Reinberg.

Ethics declarations

Competing interests

D.R. is a co-founder of Constellation Pharmaceuticals and Fulcrum Therapeutics. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Euchromatin

Light-staining, decondensed, gene-rich and transcriptionally active and accessible regions of the genome, enriched in trimethylated histone H3 lysine 4 (H3K4me3) and acetylated histone H3 (H3ac).

Heterochromatin

Dark-staining, condensed, gene-poor and repetitive regions of the genome. These regions can be further classified into facultative and constitutive heterochromatin that are enriched in trimethylated histone H3 lysine 27 (H3K27me3) and H3K9me3, respectively.

Transcriptional signature

Transcriptional patterns that are specific to a given cell type and are responsible for cellular identity.

Epigenetic mechanism

A molecular process that is involved in establishing a heritable state of chromatin by modifications of DNA or post-translational modification of the histone H3 isoforms, such as DNA methylation or trimethylated histone H3 lysine 27 (H3K27me3)/H3K9me3, respectively.

Parental histones

Histones that have existed before the S phase-specific synthesis of histones.

Epigenetic modification

This term is incorrectly used in many circumstances. The designation refers to DNA methylation and post-translational modifications to histones that facilitate transcriptional programmes that are inherited across cell division. Indeed, as of today in mammals, only two modifications to histone H3 are known to be epigenetic (as described in the glossary definition for ‘epigenetic mechanism’). In yeast, only deacetylation of lysine 16 of histone H4 establishes an epigenetic programme at three specific loci, as explained in the main text.

‘Read–write’ mechanism

Enzymatic activity of some methyltransferases that exhibit a self-contained positive-feedback loop. Thus far, only SUV39H1/SUV39H2 and Polycomb repressive complex 2 (PRC2) have shown this activity, in which a domain of the SUV39H1/SUV39H2 polypeptide or a subunit of PRC2 recognizes the product of its catalysis, trimethylated histone H3 lysine 9 (H3K9me3) or H3K27me3, respectively. These binding events result in the stimulation of the activity of the SET domain, which comprises the same polypeptide in the case of SUV39H1/SUV39H2 or another subunit in the case of PRC2, further spreading the histone modification.

Allosteric stimulation

Activation of an enzyme mediated by a small regulatory molecule that interacts at a site other than the active site.

Newly synthesized ‘naive’ histones

Histones that have been recently synthesized and contain only few post-translational modifications, including monomethylated histone H3 lysine 9 (H3K9me1), acetylated histone H4 lysine 5 (H4K5ac) and H4K12ac.

Parental nucleosome segregation

The disassembly of the parental nucleosomes into one histone (H3–H4)2 tetramer and two histone H2A–H2B dimers ahead of the replication fork and their placement behind the fork to the leading and lagging strand.

Histone eviction

Complete removal of histones forming part of nucleosomes, as a consequence of DNA processing, such as transcription, DNA replication and DNA repair.

Histone turnover

The rate of histone exchange at a particular locus. In the main text, we focus mainly on the histone exchange associated with transcription as chromatin within an active transcriptional domain has higher histone turnover than chromatin within a silent transcriptional domain.

Replication timing

The order in which segments of DNA are duplicated during the S phase of the cell cycle. Correlation exists where early replication timing corresponds to euchromatin and late replication timing corresponds to heterochromatin regions.

Bivalent promoters

Promoters that have both repressive (trimethylated histone H3 lysine 27 (H3K27me3)) and activating (H3K4me3) histone post-translational modifications within the same nucleosome.

Oncohistones

Recurrent mutations in histone genes that lead to the expression of mutant histones with oncogenic characteristics. Their expression affects the global chromatin landscape of the cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar, T.M., Loyola, A. & Reinberg, D. Parental nucleosome segregation and the inheritance of cellular identity. Nat Rev Genet 22, 379–392 (2021). https://doi.org/10.1038/s41576-020-00312-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-020-00312-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing