Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting lipid GPCRs to treat type 2 diabetes mellitus — progress and challenges

Abstract

Therapeutic approaches to the treatment of type 2 diabetes mellitus that are designed to increase insulin secretion either directly target β-cells or indirectly target gastrointestinal enteroendocrine cells (EECs), which release hormones that modulate insulin secretion (for example, incretins). Given that β-cells and EECs both express a large array of G protein-coupled receptors (GPCRs) that modulate insulin secretion, considerable research and development efforts have been undertaken to design therapeutic drugs targeting these GPCRs. Among them are GPCRs specific for free fatty acid ligands (lipid GPCRs), including free fatty acid receptor 1 (FFA1, otherwise known as GPR40), FFA2 (GPR43), FFA3 (GPR41) and FFA4 (GPR120), as well as the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). These lipid GPCRs have demonstrated important roles in the control of islet and gut hormone secretion. Advances in lipid GPCR pharmacology have led to the identification of a number of synthetic agonists that exert beneficial effects on glucose homeostasis in preclinical studies. Yet, translation of these promising results to the clinic has so far been disappointing. In this Review, we present the physiological roles, pharmacology and clinical studies of these lipid receptors and discuss the challenges associated with their clinical development for the treatment of type 2 diabetes mellitus.

Key points

  • Enteroendocrine and islet hormone secretion is regulated by diverse stimuli acting via G protein-coupled receptors (GPCRs).

  • The free fatty acid-specific GPCRs, free fatty acid receptor 1 (FFA1, also known as GPR40), FFA2 (GPR43), FFA3 (GPR41) and FFA4 (GPR120) and the lipid metabolite-specific GPCR glucose-dependent insulinotropic receptor (GPR119) are critical regulators of islet and gut hormone secretion.

  • Advances in lipid GPCR pharmacology have led to the identification of synthetic agonists that show promising effects in the control of glucose homeostasis in preclinical studies.

  • Challenges remain for successful clinical application of lipid GPCR agonists for the treatment of type 2 diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The human pancreatic islet and regulation of islet hormone secretion.
Fig. 2: Distribution of endocrine cells in the gastrointestinal tract and regulation of hormone secretion.
Fig. 3: Lipid metabolite-specific GPCR signalling in the control of hormone secretion.

Similar content being viewed by others

References

  1. Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 157, 107843 (2019).

    Article  PubMed  Google Scholar 

  2. Kahn, S. E., Cooper, M. E. & Del Prato, S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383, 1068–1083 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Nauck, M. A., Vilsbøll, T., Gallwitz, B., Garber, A. & Madsbad, S. Incretin-based therapies: viewpoints on the way to consensus. Diabetes Care 32, S223–S231 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amisten, S. et al. A comparative analysis of human and mouse islet G-protein coupled receptor expression. Sci. Rep. 7, 46600 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Persaud, S. J. Islet G-protein coupled receptors: therapeutic potential for diabetes. Curr. Opin. Pharmacol. 37, 24–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Roberts, G. P. et al. Comparison of human and murine enteroendocrine cells by transcriptomic and peptidomic profiling. Diabetes 68, 1062–1072 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Briscoe, C. P. et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 278, 11303–11311 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Itoh, Y. et al. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 422, 173–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Kotarsky, K., Nilsson, N. E., Flodgren, E., Owman, C. & Olde, B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. Biochem. Biophys. Res. Commun. 301, 406–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Hirasawa, A. et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11, 90–94 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Soga, T. et al. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem. Biophys. Res. Commun. 326, 744–751 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. & Schwartz, T. W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Kimura, I., Ichimura, A., Ohue-Kitano, R. & Igarashi, M. Free fatty acid receptors in health and disease. Physiol. Rev. 100, 171–210 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Cabrera, O. et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA 103, 2334–2339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahren, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat. Rev. Drug Discov. 8, 369–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Amisten, S., Salehi, A., Rorsman, P., Jones, P. M. & Persaud, S. J. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol. Ther. 139, 359–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Fakhry, J. et al. Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell Tissue Res. 376, 37–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parker, H. E., Habib, A. M., Rogers, G. J., Gribble, F. M. & Reimann, F. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52, 289–298 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Egerod, K. L. et al. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin. Endocrinology 153, 5782–5795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sykaras, A. G., Demenis, C., Case, R. M., McLaughlin, J. T. & Smith, C. P. Duodenal enteroendocrine I-cells contain mRNA transcripts encoding key endocannabinoid and fatty acid receptors. PLoS ONE 7, e42373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Egerod, K. L. et al. Transcriptional and functional characterization of the G protein-coupled receptor repertoire of gastric somatostatin cells. Endocrinology 156, 3909–3923 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Koyama, H. et al. Comprehensive profiling of GPCR expression in ghrelin-producing cells. Endocrinology 157, 692–704 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Christiansen, E. et al. Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. Br. J. Nutr. 113, 1677–1688 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Oh, D. Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Syed, I. et al. Palmitic acid hydroxystearic acids activate GPR40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab. 27, 419–427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tunaru, S. et al. 20-HETE promotes glucose-stimulated insulin secretion in an autocrine manner through FFAR1. Nat. Commun. 9, 177 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Drzazga, A. et al. Lysophosphatidylcholine and its phosphorothioate analogues potentiate insulin secretion via GPR40 (FFAR1), GPR55 and GPR119 receptors in a different manner. Mol. Cell Endocrinol. 472, 117–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Nagasawa, T. et al. Phytosphingosine is a novel activator of GPR120. J. Biochem. 164, 27–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Adriaenssens, A. E. et al. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets. Diabetologia 59, 2156–2165 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DiGruccio, M. R. et al. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol. Metab. 5, 449–458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ekberg, J. H. et al. GPR119, a major enteroendocrine sensor of dietary triglyceride metabolites coacting in synergy with FFA1 (GPR40). Endocrinology 157, 4561–4569 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ferdaoussi, M. et al. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 55, 2682–2692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liou, A. P. et al. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 140, 903–912 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Latour, M. G. et al. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes 56, 1087–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Edfalk, S., Steneberg, P. & Edlund, H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57, 2280–2287 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiong, Y. et al. Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol. Cell Endocrinol. 369, 119–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Sankoda, A. et al. Long-chain free fatty acid receptor GPR120 mediates oil-induced GIP secretion through CCK in male mice. Endocrinology 158, 1172–1180 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Poitout, V. & Robertson, R. P. Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr. Rev. 29, 351–366 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Steneberg, P., Rubins, N., Bartoov-Shifman, R., Walker, M. D. & Edlund, H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab. 1, 245–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Tan, C. P. et al. Selective small-molecule agonists of G protein-coupled receptor 40 promote glucose-dependent insulin secretion and reduce blood glucose in mice. Diabetes 57, 2211–2219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kebede, M. et al. The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 57, 2432–2437 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hamid, Y. H. et al. Studies of relationships between variation of the human G protein-coupled receptor 40 gene and type 2 diabetes and insulin release. Diabet. Med. 22, 74–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Kalis, M. et al. Variants in the FFAR1 gene are associated with beta cell function. PLoS ONE 2, e1090 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Vettor, R. et al. Loss-of-function mutation of the GPR40 gene associates with abnormal stimulated insulin secretion by acting on intracellular calcium mobilization. J. Clin. Endocrinol. Metab. 93, 3541–3550 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Guo, S., Zhang, J., Zhang, S. & Li, J. A single amino acid mutation (R104P) in the E/DRY motif of GPR40 impairs receptor function. PLoS ONE 10, e0141303 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tomita, T. et al. Expression of the gene for a membrane-bound fatty acid receptor in the pancreas and islet cell tumours in humans: evidence for GPR40 expression in pancreatic beta cells and implications for insulin secretion. Diabetologia 49, 962–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Del Guerra, S. et al. G-protein-coupled receptor 40 (GPR40) expression and its regulation in human pancreatic islets: the role of type 2 diabetes and fatty acids. Nutr. Metab. Cardiovasc. Dis. 20, 22–25 (2010).

    Article  PubMed  CAS  Google Scholar 

  53. Hauke, S., Keutler, K., Phapale, P., Yushchenko, D. A. & Schultz, C. Endogenous fatty acids are essential signaling factors of pancreatic β-cells and insulin secretion. Diabetes 67, 1986–1998 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Peyot, M. L. et al. Hormone-sensitive lipase has a role in lipid signaling for insulin secretion but is nonessential for the incretin action of glucagon-like peptide 1. Diabetes 53, 1733–1742 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Mulder, H., Yang, S., Winzell, M. S., Holm, C. & Ahrén, B. Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes 53, 122–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Mugabo, Y. et al. Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells. J. Biol. Chem. 292, 7407–7422 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Flodgren, E. et al. GPR40 is expressed in glucagon producing cells and affects glucagon secretion. Biochem. Biophys. Res. Commun. 354, 240–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, L. et al. Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+]i increase in pancreatic islet α-cells. J. Endocrinol. 210, 173–179 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Suckow, A. T. et al. Alteration of the glucagon axis in GPR120 (FFAR4) knockout mice: a role for GPR120 in glucagon secretion. J. Biol. Chem. 289, 15751–15763 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yashiro, H. et al. The effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid 1 agonist, on insulin and glucagon secretion in isolated rat and human islets. J. Pharmacol. Exp. Ther. 340, 483–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Hauge, M. et al. GPR40 (FFAR1) – combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol. Metab. 4, 3–14 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Hauge, M. et al. Gq and Gs signaling acting in synergy to control GLP-1 secretion. Mol. Cell Endocrinol. 449, 64–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Oh da, Y. et al. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat. Med. 20, 942–947 (2014).

    Article  PubMed  CAS  Google Scholar 

  64. Gotoh, C. et al. The regulation of adipogenesis through GPR120. Biochem. Biophys. Res. Commun. 354, 591–597 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Song, T. et al. GPR120 promotes adipogenesis through intracellular calcium and extracellular signal-regulated kinase 1/2 signal pathway. Mol. Cell Endocrinol. 434, 1–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Hilgendorf, K. I. et al. Omega-3 fatty acids activate ciliary FFAR4 to control adipogenesis. Cell 179, 1289–1305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Quesada-Lopez, T. et al. The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nat. Commun. 7, 13479 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schilperoort, M. et al. The GPR120 agonist TUG-891 promotes metabolic health by stimulating mitochondrial respiration in brown fat. EMBO Mol. Med. 10, e8047 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Husted, A. S. et al. Autocrine negative feedback regulation of lipolysis through sensing of NEFAs by FFAR4/GPR120 in WAT. Mol. Metab. 42, 101103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Auguste, S. et al. Central agonism of GPR120 acutely inhibits food intake and food reward and chronically suppresses anxiety-like behavior in mice. Int. J. Neuropsychopharmacol. 19, pyw014 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ichimura, A. et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483, 350–354 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, Y., Xie, T., Zhang, D. & Leung, P. S. GPR120 protects lipotoxicity-induced pancreatic β-cell dysfunction through regulation of PDX1 expression and inhibition of islet inflammation. Clin. Sci. 133, 101–116 (2019).

    Article  CAS  Google Scholar 

  73. Taneera, J. et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab. 16, 122–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Stone, V. M. et al. GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 57, 1182–1191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu, C.-T. et al. Discovery of ciliary G protein-coupled receptors regulating pancreatic islet insulin and glucagon secretion. Preprint at bioRxiv https://doi.org/10.1101/2020.10.21.349423 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhao, Y. F. et al. GPR120 regulates pancreatic polypeptide secretion from male mouse islets via PLC-mediated calcium mobilization. Endocrinology 161, bqaa157 (2020).

    Article  PubMed  Google Scholar 

  77. Croze, M. L. et al. Free-fatty acid receptor 4 inhibitory signaling in delta cells regulates islet hormone secretion in mice. Preprint at bioRxiv https://doi.org/10.1101/2020.07.17.208637 (2020).

    Article  Google Scholar 

  78. Engelstoft, M. S. et al. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol. Metab. 2, 376–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hudson, B. D. et al. The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol. Pharmacol. 84, 710–725 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iwasaki, K. et al. Free fatty acid receptor GPR120 is highly expressed in enteroendocrine K cells of the upper small intestine and has a critical role in GIP secretion after fat ingestion. Endocrinology 156, 837–846 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Paulsen, S. J. et al. Expression of the fatty acid receptor GPR120 in the gut of diet-induced-obese rats and its role in GLP-1 secretion. PLoS ONE 9, e88227 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Lu, X. et al. Postprandial inhibition of gastric ghrelin secretion by long-chain fatty acid through GPR120 in isolated gastric ghrelin cells and mice. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G367–G376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hansen, L. et al. Somatostatin restrains the secretion of glucagon-like peptide-1 and -2 from isolated perfused porcine ileum. Am. J. Physiol. Endocrinol. Metab. 278, E1010–E1018 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Bergeron, V., Ghislain, J. & Poitout, V. The P21-activated kinase PAK4 is implicated in fatty-acid potentiation of insulin secretion downstream of free fatty acid receptor 1. Islets 8, 157–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yamada, H. et al. Potentiation of glucose-stimulated insulin secretion by the GPR40-PLC-TRPC pathway in pancreatic β-cells. Sci. Rep. 6, 25912 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Goldspink, D. A. et al. Mechanistic insights into the detection of free fatty and bile acids by ileal glucagon-like peptide-1 secreting cells. Mol. Metab. 7, 90–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Srivastava, A. et al. High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature 513, 124–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Lu, J. et al. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat. Struct. Mol. Biol. 24, 570–577 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Ho, J. D. et al. Structural basis for GPR40 allosteric agonism and incretin stimulation. Nat. Commun. 9, 1645 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lin, D. C. et al. Identification and pharmacological characterization of multiple allosteric binding sites on the free fatty acid 1 receptor. Mol. Pharmacol. 82, 843–859 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lückmann, M. et al. Molecular dynamics-guided discovery of an ago-allosteric modulator for GPR40/FFAR1. Proc. Natl Acad. Sci. USA 116, 7123–7128 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Negoro, N. et al. Discovery of TAK-875: a potent, selective, and orally bioavailable GPR40 agonist. ACS Med. Chem. Lett. 1, 290–294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yabuki, C. et al. A novel antidiabetic drug, fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1. PLoS ONE 8, e76280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mancini, A. D. et al. β-arrestin recruitment and biased agonism at free fatty acid receptor 1. J. Biol. Chem. 290, 21131–21140 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tsujihata, Y. et al. TAK-875, an orally available G protein-coupled receptor 40/free fatty acid receptor 1 agonist, enhances glucose-dependent insulin secretion and improves both postprandial and fasting hyperglycemia in type 2 diabetic rats. J. Pharmacol. Exp. Ther. 339, 228–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Brown, S. P. et al. Discovery of AM-1638: a potent and orally bioavailable GPR40/FFA1 full agonist. ACS Med. Chem. Lett. 3, 726–730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Luo, J. et al. A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS ONE 7, e46300 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pachanski, M. J. et al. GPR40 partial agonists and AgoPAMs: differentiating effects on glucose and hormonal secretions in the rodent. PLoS ONE 12, e0186033 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ueno, H. et al. GPR40 full agonism exerts feeding suppression and weight loss through afferent vagal nerve. PLoS ONE 14, e0222653 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ueno, H. et al. SCO-267, a GPR40 full agonist, improves glycemic and body weight control in rat models of diabetes and obesity. J. Pharmacol. Exp. Ther. 370, 172–181 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, Y. et al. Discovery and optimization of potent GPR40 full agonists containing tricyclic spirocycles. ACS Med. Chem. Lett. 4, 551–555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gorski, J. N. et al. GPR40 reduces food intake and body weight through GLP-1. Am. J. Physiol. Endocrinol. Metab. 313, E37–E47 (2017).

    Article  PubMed  Google Scholar 

  104. Sundstrom, L. et al. The acute glucose lowering effect of specific GPR120 activation in mice is mainly driven by glucagon-like peptide 1. PLoS ONE 12, e0189060 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Moran, B. M., Abdel-Wahab, Y. H., Flatt, P. R. & McKillop, A. M. Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic β-cells. Diabetes Obes. Metab. 16, 1128–1139 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, D. et al. Insulinotropic effects of GPR120 agonists are altered in obese diabetic and obese non-diabetic states. Clin. Sci. 131, 247–260 (2017).

    Article  CAS  Google Scholar 

  107. Watson, S. J., Brown, A. J. & Holliday, N. D. Differential signaling by splice variants of the human free fatty acid receptor GPR120. Mol. Pharmacol. 81, 631–642 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, W. et al. Spatiotemporal dynamic monitoring of fatty acid-receptor interaction on single living cells by multiplexed Raman imaging. Proc. Natl Acad. Sci. USA 117, 3518–3527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McCloskey, A. G., Miskelly, M. G., Flatt, P. R. & McKillop, A. M. Pharmacological potential of novel agonists for FFAR4 on islet and enteroendocrine cell function and glucose homeostasis. Eur. J. Pharm. Sci. 142, 105104 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Priyadarshini, M., Kotlo, K. U., Dudeja, P. K. & Layden, B. T. Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr. Physiol. 8, 1091–1115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Brown, A. J. et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ge, H. et al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149, 4519–4526 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Tang, C. et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat. Med. 21, 173–177 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. McNelis, J. C. et al. GPR43 potentiates β-cell function in obesity. Diabetes 64, 3203–3217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Adriaenssens, A. et al. A transcriptome-led exploration of molecular mechanisms regulating somatostatin-producing D-cells in the gastric epithelium. Endocrinology 156, 3924–3936 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Priyadarshini, M. & Layden, B. T. FFAR3 modulates insulin secretion and global gene expression in mouse islets. Islets 7, e1045182 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bolognini, D. et al. Chemogenetics defines receptor-mediated functions of short chain free fatty acids. Nat. Chem. Biol. 15, 489–498 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).

    Article  PubMed  CAS  Google Scholar 

  121. Priyadarshini, M. et al. An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol. Endocrinol. 29, 1055–1066 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ang, Z., Xiong, D., Wu, M. & Ding, J. L. FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing. FASEB J. 32, 289–303 (2018).

    Article  CAS  PubMed  Google Scholar 

  123. Villa, S. R. et al. Homology modeling of FFA2 identifies novel agonists that potentiate insulin secretion. J. Investig. Med. 65, 1116–1124 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Overton, H. A. et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 3, 167–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Syed, S. K. et al. Regulation of GPR119 receptor activity with endocannabinoid-like lipids. Am. J. Physiol. Endocrinol. Metab. 303, E1469–E1478 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Kogure, R., Toyama, K., Hiyamuta, S., Kojima, I. & Takeda, S. 5-Hydroxy-eicosapentaenoic acid is an endogenous GPR119 agonist and enhances glucose-dependent insulin secretion. Biochem. Biophys. Res. Commun. 416, 58–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Chu, Z. L. et al. N-oleoyldopamine enhances glucose homeostasis through the activation of GPR119. Mol. Endocrinol. 24, 161–170 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Rodríguez de Fonseca, F. et al. An anorexic lipid mediator regulated by feeding. Nature 414, 209–212 (2001).

    Article  PubMed  Google Scholar 

  129. Li, N. X. et al. GPR119 agonism increases glucagon secretion during insulin-induced hypoglycemia. Diabetes 67, 1401–1413 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lan, H. et al. GPR119 is required for physiological regulation of glucagon-like peptide-1 secretion but not for metabolic homeostasis. J. Endocrinol. 201, 219–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Chu, Z.-L. et al. A role for beta-cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucose-dependent insulin release. Endocrinology 148, 2601–2609 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Panaro, B. L. et al. β-cell inactivation of Gpr119 unmasks incretin dependence of GPR119-mediated glucoregulation. Diabetes 66, 1626–1635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lauffer, L. M., Iakoubov, R. & Brubaker, P. L. GPR119 is essential for oleoylethanolamide-induced glucagon-like peptide-1 secretion from the intestinal enteroendocrine L-cell. Diabetes 58, 1058–1066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Moss, C. E. et al. Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. Peptides 77, 16–20 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chu, Z.-L. et al. A role for intestinal endocrine cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release. Endocrinology 149, 2038–2047 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Semple, G. et al. Discovery of the first potent and orally efficacious agonist of the orphan G-protein coupled receptor 119. J. Med. Chem. 51, 5172–5175 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. McKillop, A. M., Moran, B. M., Abdel-Wahab, Y. H. A., Gormley, N. M. & Flatt, P. R. Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocin-induced diabetic and incretin-receptor-knockout mice. Diabetologia 59, 2674–2685 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Flock, G., Holland, D., Seino, Y. & Drucker, D. J. GPR119 regulates murine glucose homeostasis through incretin receptor-dependent and independent mechanisms. Endocrinology 152, 374–383 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Cox, H. M. et al. Peptide YY is critical for acylethanolamine receptor Gpr119-induced activation of gastrointestinal mucosal responses. Cell Metab. 11, 532–542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hansen, H. S., Rosenkilde, M. M., Holst, J. J. & Schwartz, T. W. GPR119 as a fat sensor. Trends Pharmacol. Sci. 33, 374–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Hassing, H. A. et al. Biased signaling of lipids and allosteric actions of synthetic molecules for GPR119. Biochem. Pharmacol. 119, 66–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Yoshida, S., Ohishi, T., Matsui, T. & Shibasaki, M. Identification of a novel GPR119 agonist, AS1269574, with in vitro and in vivo glucose-stimulated insulin secretion. Biochem. Biophys. Res. Commun. 400, 437–441 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Semple, G. et al. Discovery of a second generation agonist of the orphan G-protein coupled receptor GPR119 with an improved profile. Bioorg Med. Chem. Lett. 22, 1750–1755 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Park, Y. H. et al. YH18421, a novel GPR119 agonist exerts sustained glucose lowering and weight loss in diabetic mouse model. Arch. Pharm. Res. 40, 772–782 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Tyurenkov, I. N. et al. ZB-16, a novel GPR119 agonist, relieves the severity of streptozotocin-nicotinamide-induced diabetes in rats. Front. Endocrinol. 8, 152 (2017).

    Article  Google Scholar 

  146. Matsumoto, K. et al. DS-8500a, an orally available G protein-coupled receptor 119 agonist, upregulates glucagon-like peptide-1 and enhances glucose-dependent insulin secretion and improves glucose homeostasis in type 2 diabetic rats. J. Pharmacol. Exp. Ther. 367, 509–517 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Gao, J. et al. Stimulating β-cell replication and improving islet graft function by AR231453, a GPR119 agonist. Transplant. Proc. 43, 3217–3220 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Ansarullah et al. Activation of GPR119 stimulates human β-cell replication and neogenesis in humanized mice with functional human islets. J. Diabetes Res. 2016, 1620821 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Murakami, T. et al. Noninvasive evaluation of GPR119 agonist effects on β-cell mass in diabetic male mice using 111In-exendin-4 SPECT/CT. Endocrinology 160, 2959–2968 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Araki, T., Hirayama, M., Hiroi, S. & Kaku, K. GPR40-induced insulin secretion by the novel agonist TAK-875: first clinical findings in patients with type 2 diabetes. Diabetes Obes. Metab. 14, 271–278 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Kaku, K., Araki, T. & Yoshinaka, R. Randomized, double-blind, dose-ranging study of TAK-875, a novel GPR40 agonist, in Japanese patients with inadequately controlled type 2 diabetes. Diabetes Care 36, 245–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Burant, C. F. et al. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 379, 1403–1411 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Kaku, K., Enya, K., Nakaya, R., Ohira, T. & Matsuno, R. Efficacy and safety of fasiglifam (TAK-875), a G protein-coupled receptor 40 agonist, in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise: a randomized, double-blind, placebo-controlled, phase III trial. Diabetes Obes. Metab. 17, 675–681 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ackerson, T. et al. Mechanistic investigations of the liver toxicity of the free fatty acid receptor 1 agonist fasiglifam (TAK875) and its primary metabolites. J. Biochem. Mol. Toxicol. 33, e22345 (2019).

    Article  PubMed  CAS  Google Scholar 

  155. Defossa, E. & Wagner, M. Recent developments in the discovery of FFA1 receptor agonists as novel oral treatment for type 2 diabetes mellitus. Bioorg Med. Chem. Lett. 24, 2991–3000 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03774095 (2018).

  157. Katz, L. B. et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of JNJ-38431055, a novel GPR119 receptor agonist and potential antidiabetes agent, in healthy male subjects. Clin. Pharmacol. Ther. 90, 685–692 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Katz, L. B. et al. Effects of JNJ-38431055, a novel GPR119 receptor agonist, in randomized, double-blind, placebo-controlled studies in subjects with type 2 diabetes. Diabetes Obes. Metab. 14, 709–716 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Nunez, D. J. et al. Gut hormone pharmacology of a novel GPR119 agonist (GSK1292263), metformin, and sitagliptin in type 2 diabetes mellitus: results from two randomized studies. PLoS ONE 9, e92494 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Yamada, Y. et al. Efficacy and safety of GPR119 agonist DS-8500a in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, 12-week study. Adv. Ther. 35, 367–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Terauchi, Y. et al. Efficacy and safety of the G protein-coupled receptor 119 agonist DS-8500a in Japanese type 2 diabetes mellitus patients with inadequate glycemic control on sitagliptin: a phase 2 randomized placebo-controlled study. J. Diabetes Investig. 9, 1333–1341 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Watada, H. et al. G protein-coupled receptor 119 agonist DS-8500a effects on pancreatic β-cells in Japanese type 2 diabetes mellitus patients. J. Diabetes Investig. 10, 84–93 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04432090 (2020).

  164. Satapati, S. et al. GPR120 suppresses adipose tissue lipolysis and synergizes with GPR40 in antidiabetic efficacy. J. Lipid Res. 58, 1561–1578 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Briere, D. A., Bueno, A. B., Gunn, E. J., Michael, M. D. & Sloop, K. W. Mechanisms to elevate endogenous GLP-1 beyond injectable GLP-1 analogs and metabolic surgery. Diabetes 67, 309–320 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Huan, Y. et al. The dual DPP4 inhibitor and GPR119 agonist HBK001 regulates glycemic control and beta cell function ex and in vivo. Sci. Rep. 7, 4351 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Wolenski, F. S. et al. Fasiglifam (TAK-875) alters bile acid homeostasis in rats and dogs: a potential cause of drug induced liver injury. Toxicol. Sci. 157, 50–61 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Longo, D. M. et al. Quantitative systems toxicology analysis of in vitro mechanistic assays reveals importance of bile acid accumulation and mitochondrial dysfunction in TAK-875-induced liver injury. Toxicol. Sci. 167, 458–467 (2019).

    Article  CAS  PubMed  Google Scholar 

  169. DeWire, S. M. et al. A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther. 344, 708–717 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Peterson, Y. K. & Luttrell, L. M. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol. Rev. 69, 256–297 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hansen, A. H. et al. Discovery of a potent thiazolidine free fatty acid receptor 2 agonist with favorable pharmacokinetic properties. J. Med. Chem. 61, 9534–9550 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Ulven, E. R. et al. Structure-activity relationship studies of tetrahydroquinolone free fatty acid receptor 3 modulators. J. Med. Chem. 63, 3577–3595 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yang, J. W., Kim, H. S., Choi, Y. W., Kim, Y. M. & Kang, K. W. Therapeutic application of GPR119 ligands in metabolic disorders. Diabetes Obes. Metab. 20, 257–269 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Lückmann, M., Trauelsen, M., Frimurer, T. M. & Schwartz, T. W. Structural basis for GPCR signaling by small polar versus large lipid metabolites–discovery of non-metabolite ligands. Curr. Opin. Cell Biol. 63, 38–48 (2020).

    Article  PubMed  CAS  Google Scholar 

  175. Shimada, I., Ueda, T., Kofuku, Y., Eddy, M. T. & Wüthrich, K. GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 18, 59–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Miao, Y. & McCammon, J. A. G-protein coupled receptors: advances in simulation and drug discovery. Curr. Opin. Struct. Biol. 41, 83–89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Li, Z. et al. Free fatty acid receptor agonists for the treatment of type 2 diabetes: drugs in preclinical to phase II clinical development. Expert. Opin. Investig. Drugs 25, 871–890 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Karlsson, S. & Ahrén, B. Cholecystokinin-stimulated insulin secretion and protein kinase C in rat pancreatic islets. Acta Physiol. Scand. 142, 397–403 (1991).

    Article  CAS  PubMed  Google Scholar 

  179. Fehmann, H. C. et al. The effects of glucagon-like peptide-I (GLP-I) on hormone secretion from isolated human pancreatic islets. Pancreas 11, 196–200 (1995).

    Article  CAS  PubMed  Google Scholar 

  180. El, K. & Campbell, J. E. The role of GIP in α-cells and glucagon secretion. Peptides 125, 170213 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Svendsen, B. et al. Insulin secretion depends on intra-islet glucagon signaling. Cell Rep. 25, 1127–1134.e2 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Zhu, L. et al. Intra-islet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight 5, e127994 (2019).

    Article  Google Scholar 

  183. Rorsman, P. & Huising, M. O. The somatostatin-secreting pancreatic δ-cell in health and disease. Nat. Rev. Endocrinol. 14, 404–414 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Vergari, E. et al. Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion. Nat. Commun. 10, 139 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. van der Meulen, T. et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21, 769–776 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Lafferty, R. A., Flatt, P. R. & Irwin, N. Emerging therapeutic potential for peptide YY for obesity-diabetes. Peptides 100, 269–274 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Hassing, H. A. et al. Oral 2-oleyl glyceryl ether improves glucose tolerance in mice through the GPR119 receptor. Biofactors 42, 665–673 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Corleto, V. D. Somatostatin and the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 17, 63–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Bergeron, V. et al. Deletion of protein kinase D1 in pancreatic β-cells impairs insulin secretion in high-fat diet-fed mice. Diabetes 67, 71–77 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Ramracheya, R. D. et al. PYY-dependent restoration of impaired insulin and glucagon secretion in type 2 diabetes following Roux-en-Y gastric bypass surgery. Cell Rep. 15, 944–950 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Khan, D., Vasu, S., Moffett, R. C., Irwin, N. & Flatt, P. R. Influence of neuropeptide Y and pancreatic polypeptide on islet function and beta-cell survival. Biochim. Biophys. Acta Gen. Subj. 1861, 749–758 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Sciences and Engineering Research Council of Canada (RGPIN-2016-03952) and the Canadian Institutes of Health Research (MOP 86545). V.P. holds the Canada Research Chair in Diabetes and Pancreatic Beta-cell Function.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Vincent Poitout.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks G. Milligan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghislain, J., Poitout, V. Targeting lipid GPCRs to treat type 2 diabetes mellitus — progress and challenges. Nat Rev Endocrinol 17, 162–175 (2021). https://doi.org/10.1038/s41574-020-00459-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-00459-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing