Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Strategies to access biosynthetic novelty in bacterial genomes for drug discovery

Abstract

Bacteria provide a rich source of natural products with potential therapeutic applications, such as novel antibiotic classes or anticancer drugs. Bioactivity-guided screening of bacterial extracts and characterization of biosynthetic pathways for drug discovery is now complemented by the availability of large (meta)genomic collections, placing researchers into the postgenomic, big-data era. The progress in next-generation sequencing and the rise of powerful computational tools provide unprecedented insights into unexplored taxa, ecological niches and ‘biosynthetic dark matter’, revealing diverse and chemically distinct natural products in previously unstudied bacteria. In this Review, we discuss such sources of new chemical entities and the implications for drug discovery with a particular focus on the strategies that have emerged in recent years to identify and access novelty.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mining bacterial genomes for new NPs.
Fig. 2: Experimental strategies to functionally link BGCs with their respective NPs.
Fig. 3: Examples of ecology-guided approaches and compounds discovered by them.
Fig. 4: Bacterial dark matter is a prolific source of new NPs.

Similar content being viewed by others

References

  1. Carter, H. E. et al. Isolation and purification of streptomycin. J. Biol. Chem. 160, 337–342 (1945).

    Article  CAS  Google Scholar 

  2. Davies, J. & Ryan, K. S. Introducing the parvome: bioactive compounds in the microbial world. ACS Chem. Biol. 7, 252–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Medema, M. H. & Fischbach, M. A. Computational approaches to natural product discovery. Nat. Chem. Biol. 11, 639–648 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Skinnider, M. A., Merwin, N. J., Johnston, C. W. & Magarvey, N. A. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res. 45, W49–W54 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sugimoto, Y. et al. A metagenomic strategy for harnessing the chemical repertoire of the human microbiome. Science 366, 1332 (2019).

    Article  CAS  Google Scholar 

  7. Russell, A. H. & Truman, A. W. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Comput. Struct. Biotechnol. J. 18, 1838–1851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van Heel, A. J. et al. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Uddin, M. A. et al. A plant endophyte Staphylococcus hominis strain MBL_AB63 produces a novel lantibiotic, homicorcin and a position one variant. Sci. Rep. 11, 11211 (2021).

    Article  CAS  Google Scholar 

  10. Kloosterman, A. M., Shelton, K. E., van Wezel, G. P., Medema, M. H. & Mitchell, D. A. RRE-Finder: a genome-mining tool for class-independent RiPP discovery. mSystems 5, e00267 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Agrawal, P., Khater, S., Gupta, M., Sain, N. & Mohanty, D. RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links. Nucleic Acids Res. 45, W80–W88 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saad, H. et al. Nocathioamides, uncovered by a tunable metabologenomic approach, define a novel class of chimeric lanthipeptides. Angew. Chem. Int. Ed. 60, 16472–16479 (2021).

    Article  CAS  Google Scholar 

  13. Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwalen, C. J., Hudson, G. A., Kille, B. & Mitchell, D. A. Bioinformatic expansion and discovery of thiopeptide antibiotics. J. Am. Chem. Soc. 140, 9494–9501 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Agrawal, P., Amir, S., Deepak, Barua, D. & Mohanty, D. RiPPMiner-Genome: a web resource for automated prediction of crosslinked chemical structures of RiPPs by genome mining. J. Mol. Biol. 433, 166887 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Merwin, N. J. et al. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. Proc. Natl Acad. Sci. USA 117, 371–380 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. de Los Santos, E. L. C. NeuRiPP: neural network identification of RiPP precursor peptides. Sci. Rep. 9, 13406 (2019).

    Article  PubMed  CAS  Google Scholar 

  18. Santos-Aberturas, J. et al. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res. 47, 4624–4637 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Russell, A. H., Vior, N. M., Hems, E. S., Lacret, R. & Truman, A. W. Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature. Chem. Sci. 12, 11769–11778 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Skinnider, M. A. et al. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Proc. Natl Acad. Sci. USA 113, E6343–E6351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Villebro, R., Shaw, S., Blin, K. & Weber, T. Sequence-based classification of type II polyketide synthase biosynthetic gene clusters for antiSMASH. J. Ind. Microbiol. Biotechnol. 46, 469–475 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Weber, T. et al. antiSMASH 3.0 — a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43, W237–W243 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chevrette, M. G., Aicheler, F., Kohlbacher, O., Currie, C. R. & Medema, M. H. SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria. Bioinformatics 33, 3202–3210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Challis, G. L., Ravel, J. & Townsend, C. A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Röttig, M. et al. NRPSpredictor2 — a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39, W362–W367 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chu, J. et al. Synthetic-bioinformatic natural product antibiotics with diverse modes of action. J. Am. Chem. Soc. 142, 14158–14168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, C., Shang, Z., Lemetre, C., Ternei, M. A. & Brady, S. F. Cadasides, calcium-dependent acidic lipopeptides from the soil metagenome that are active against multidrug-resistant bacteria. J. Am. Chem. Soc. 141, 3910–3919 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Helfrich, E. J. N. & Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 33, 231–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen, T. et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26, 225–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Helfrich, E. J. N. et al. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat. Chem. Biol. 15, 813–821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ueoka, R. et al. Genome-based identification of a plant-associated marine bacterium as a rich natural product source. Angew. Chem. Int. Ed. 57, 14519–14523 (2018).

    Article  CAS  Google Scholar 

  33. Helfrich, E. J. N. et al. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat. Microbiol. 3, 909–919 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jahanshah, G. et al. Discovery of the cyclic lipopeptide gacamide A by genome mining and repair of the defective GacA regulator in Pseudomonas fluorescens Pf0-1. J. Nat. Prod. 82, 301–308 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Culp, E. J. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature 578, 582–587 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020).

    PubMed  Google Scholar 

  37. Blin, K., Shaw, S., Kautsar, S. A., Medema, M. H. & Weber, T. The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes. Nucleic Acids Res. 49, D639–D643 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Palaniappan, K. et al. IMG-ABC v.5.0: an update to the IMG/Atlas of biosynthetic gene clusters knowledgebase. Nucleic Acids Res. 48, D422–D430 (2020).

    CAS  PubMed  Google Scholar 

  39. Kautsar, S. A., Blin, K., Shaw, S., Weber, T. & Medema, M. H. BiG-FAM: the biosynthetic gene cluster families database. Nucleic Acids Res. 49, D490–D497 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. van Santen, J. A. et al. The Natural Products Atlas: an open access knowledge base for microbial natural products discovery. ACS Cent. Sci. 5, 1824–1833 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Banerjee, P. et al. Super Natural II — a database of natural products. Nucleic Acids Res. 43, D935–D939 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Sorokina, M. & Steinbeck, C. Review on natural products databases: where to find data in 2020. J. Cheminform 12, 20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clark, C. M., Costa, M. S., Sanchez, L. M. & Murphy, B. T. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. Proc. Natl Acad. Sci. USA 115, 4981–4986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reher, R. et al. A convolutional neural network-based approach for the rapid annotation of molecularly diverse natural products. J. Am. Chem. Soc. 142, 4114–4120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhushan, A., Egli, P. J., Peters, E. E., Freeman, M. F. & Piel, J. Genome mining- and synthetic biology-enabled production of hypermodified peptides. Nat. Chem. 11, 931–939 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vila-Farres, X. et al. Antimicrobials inspired by nonribosomal peptide synthetase gene clusters. J. Am. Chem. Soc. 139, 1404–1407 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnston, C. W. et al. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products. Nat. Commun. 6, 8421 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Kersten, R. D. et al. A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat. Chem. Biol. 7, 794–802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Medema, M. H. et al. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products. PLoS Comput. Biol. 10, e1003822 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kersten, R. D. et al. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. Proc. Natl Acad. Sci. USA 110, E4407–E4416 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mohimani, H. et al. Automated genome mining of ribosomal peptide natural products. ACS Chem. Biol. 9, 1545–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cao, L. et al. MetaMiner: a scalable peptidogenomics approach for discovery of ribosomal peptide natural products with blind modifications from microbial communities. Cell Syst. 9, 600–608 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dejong, C. A. et al. Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching. Nat. Chem. Biol. 12, 1007–1014 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Goering, A. W. et al. Metabologenomics: correlation of microbial gene clusters with metabolites drives discovery of a nonribosomal peptide with an unusual amino acid monomer. ACS Cent. Sci. 2, 99–108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Izumikawa, M. et al. Pyrrolidine-containing peptides, JBIR-126,-148, and-149, from Streptomyces sp. NBRC 111228. Tetrahedron Lett. 56, 5333–5336 (2015).

    Article  CAS  Google Scholar 

  56. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mohimani, H. et al. Dereplication of microbial metabolites through database search of mass spectra. Nat. Commun. 9, 4035 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sieber, S., Grendelmeier, S. M., Harris, L. A., Mitchell, D. A. & Gademann, K. Microviridin 1777: a toxic chymotrypsin inhibitor discovered by a metabologenomic approach. J. Nat. Prod. 83, 438–446 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu, C. et al. Lugdunomycin, an angucycline-derived molecule with unprecedented chemical. Architecture. Angew. Chem. Int. Ed. 58, 2809–2814 (2019).

    Article  CAS  Google Scholar 

  60. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ernst, M. et al. MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 9, 144 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  62. Schorn, M. A. et al. A community resource for paired genomic and metabolomic data mining. Nat. Chem. Biol. 17, 363–368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hannigan, G. D. et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res. 47, e110 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Navarro-Munoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Kayrouz, C. M., Zhang, Y., Pham, T. M. & Ju, K. S. Genome mining reveals the phosphonoalamide natural products and a new route in phosphonic acid biosynthesis. ACS Chem. Biol. 15, 1921–1929 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Kautsar, S. A., van der Hooft, J. J. J., de Ridder, D. & Medema, M. H. BiG-SLiCE: a highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. Gigascience 10, 1–17 (2021).

    Article  CAS  Google Scholar 

  68. Nothias, L. F. et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J. Nat. Prod. 81, 758–767 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Gerlt, J. A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, Y. X., Zhong, Z., Zhang, W. P. & Qian, P. Y. Discovery of cationic nonribosomal peptides as Gram-negative antibiotics through global genome mining. Nat. Commun. 9, 3273 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. de Rond, T., Asay, J. E. & Moore, B. S. Co-occurrence of enzyme domains guides the discovery of an oxazolone synthetase. Nat. Chem. Biol. 17, 794–799 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Thaker, M. N., Waglechner, N. & Wright, G. D. Antibiotic resistance-mediated isolation of scaffold-specific natural product producers. Nat. Protoc. 9, 1469–1479 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Panter, F., Krug, D., Baumann, S. & Müller, R. Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria. Chem. Sci. 9, 4898–4908 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mungan, M. D. et al. ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Nucleic Acids Res. 48, W546–W552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cruz-Morales, P. et al. Phylogenomic analysis of natural products biosynthetic gene clusters allows discovery of arseno-organic metabolites in model streptomycetes. Genome Biol. Evol. 8, 1906–1916 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Selem-Mojica, N., Aguilar, C., Gutierrez-Garcia, K., Martinez-Guerrero, C. E. & Barona-Gomez, F. EvoMining reveals the origin and fate of natural product biosynthetic enzymes. Micro. Genom. 5, e000260 (2019).

    Google Scholar 

  78. Prihoda, D. et al. The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability. Nat. Product. Rep. 38, 1100–1108 (2021).

    Article  CAS  Google Scholar 

  79. Baltz, R. H. Gifted microbes for genome mining and natural product discovery. J. Ind. Microbiol. Biotechnol. 44, 573–588 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Barka, E. A. et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43 (2016).

    Article  PubMed  Google Scholar 

  81. Watve, M. G., Tickoo, R., Jog, M. M. & Bhole, B. D. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 176, 386–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Baltz, R. H. Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. J. Ind. Microbiol. Biotechnol. 46, 281–299 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Grubbs, K. J. et al. Large-scale bioinformatics analysis of bacillus genomes uncovers conserved roles of natural products in bacterial physiology. mSystems 2, e00040 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Leao, T. et al. Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus Moorea. Proc. Natl Acad. Sci. USA 114, 3198–3203 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hillenmeyer, M. E., Vandova, G. A., Berlew, E. E. & Charkoudian, L. K. Evolution of chemical diversity by coordinated gene swaps in type II polyketide gene clusters. Proc. Natl Acad. Sci. USA 112, 13952–13957 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pfeifer, B. A., Admiraal, S. J., Gramajo, H., Cane, D. E. & Khosla, C. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291, 1790–1792 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Vieweg, L., Reichau, S., Schobert, R., Leadlay, P. F. & Sussmuth, R. D. Recent advances in the field of bioactive tetronates. Nat. Prod. Rep. 31, 1554–1584 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Leikoski, N. et al. Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. Chem. Biol. 20, 1033–1043 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Doroghazi, J. R. et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat. Chem. Biol. 10, 963–968 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hoffmann, T. et al. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat. Commun. 9, 803 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Antony-Babu, S. et al. Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences. Sci. Rep. 7, 11089 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Adamek, M. et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics 19, 426 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ziemert, N. et al. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc. Natl Acad. Sci. USA 111, E1130–E1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tobias, N. J. et al. Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nat. Microbiol. 2, 1676–1685 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Pye, C. R., Bertin, M. J., Lokey, R. S., Gerwick, W. H. & Linington, R. G. Retrospective analysis of natural products provides insights for future discovery trends. Proc. Natl Acad. Sci. USA 114, 5601–5606 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Goodrich-Blair, H. & Clarke, D. J. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol. Microbiol. 64, 260–268 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Reimer, D., Luxenburger, E., Brachmann, A. O. & Bode, H. B. A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila. Chembiochem 10, 1997–2001 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Eleftherianos, I. et al. An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc. Natl Acad. Sci. USA 104, 2419–2424 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Panthee, S., Hamamoto, H., Paudel, A. & Sekimizu, K. Lysobacter species: a potential source of novel antibiotics. Arch. Microbiol. 198, 839–845 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Nozaki, Y. et al. Cephabacins, new cephem antibiotics of bacterial origin. IV. Antibacterial activities, stability to β-lactamases and mode of action. J. Antibiot. 37, 1555–1565 (1984).

    Article  CAS  Google Scholar 

  101. Lee, W. et al. The mechanism of action of lysobactin. J. Am. Chem. Soc. 138, 100–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Sang, M. et al. Identification of an anti-MRSA cyclic lipodepsipeptide, WBP-29479A1, by genome mining of Lysobacter antibioticus. Org. Lett. 21, 6432–6436 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, Y. & Seyedsayamdost, M. R. The polyene natural product thailandamide A inhibits fatty acid biosynthesis in Gram-positive and Gram-negative bacteria. Biochemistry 57, 4247–4251 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, C. et al. Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. J. Nat. Prod. 74, 2031–2038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Biggins, J. B., Gleber, C. D. & Brady, S. F. Acyldepsipeptide HDAC inhibitor production induced in Burkholderia thailandensis. Org. Lett. 13, 1536–1539 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Biggins, J. B., Liu, X., Feng, Z. & Brady, S. F. Metabolites from the induced expression of cryptic single operons found in the genome of Burkholderia pseudomallei. J. Am. Chem. Soc. 133, 1638–1641 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Franke, J., Ishida, K. & Hertweck, C. Genomics-driven discovery of burkholderic acid, a noncanonical, cryptic polyketide from human pathogenic Burkholderia species. Angew. Chem. Int. Ed. 51, 11611–11615 (2012).

    Article  CAS  Google Scholar 

  108. Seyedsayamdost, M. R. et al. Quorum-sensing-regulated bactobolin production by Burkholderia thailandensis E264. Org. Lett. 12, 716–719 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Park, J. D. et al. Thailandenes, cryptic polyene natural products isolated from Burkholderia thailandensis using phenotype-guided transposon mutagenesis. ACS Chem. Biol. 15, 1195–1203 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Mullins, A. J. et al. Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. Nat. Microbiol. 4, 996–1005 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu, F. et al. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. Nat. Chem. Biol. 15, 161–168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ma, M. et al. Complete genome sequence of Paenibacillus mucilaginosus 3016, a bacterium functional as microbial fertilizer. J. Bacteriol. 194, 2777–2778 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Baindara, P., Nayudu, N. & Korpole, S. Whole genome mining reveals a diverse repertoire of lanthionine synthetases and lanthipeptides among the genus Paenibacillus. J. Appl. Microbiol. 128, 473–490 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Velkov, T., Thompson, P. E., Nation, R. L. & Li, J. Structure–activity relationships of polymyxin antibiotics. J. Med. Chem. 53, 1898–1916 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vater, J. et al. Genome mining of the lipopeptide biosynthesis of Paenibacillus polymyxa E681 in combination with mass spectrometry: discovery of the lipoheptapeptide paenilipoheptin. Chembiochem 19, 744–753 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Kiss, H. et al. Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95T). Stand. Genomic Sci. 5, 356–370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nett, M. et al. Siphonazole, an unusual metabolite from Herpetosiphon sp. Angew. Chem. Int. Ed. 45, 3863–3867 (2006).

    Article  CAS  Google Scholar 

  118. Zhang, J., Polishchuk, E. A., Chen, J. & Ciufolini, M. A. Development of an oxazole conjunctive reagent and application to the total synthesis of siphonazoles. J. Org. Chem. 74, 9140–9151 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Schieferdecker, S. et al. Structure and absolute configuration of auriculamide, a natural product from the predatory bacterium Herpetosiphon aurantiacus. Eur. J. Org. Chem. 2015, 3057–3062 (2015).

    Article  CAS  Google Scholar 

  120. Nakano, C., Oshima, M., Kurashima, N. & Hoshino, T. Identification of a new diterpene biosynthetic gene cluster that produces O-methylkolavelool in Herpetosiphon aurantiacus. Chembiochem 16, 772–781 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Chang, Y. J. et al. Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21). Stand. Genom. Sci. 5, 97–111 (2011).

    Article  CAS  Google Scholar 

  122. Ueoka, R. et al. Genome mining of oxidation modules in trans-acyltransferase polyketide synthases reveals a culturable source for lobatamides. Angew. Chem. Int. Ed. 59, 7761–7765 (2020).

    Article  CAS  Google Scholar 

  123. Lincke, T., Behnken, S., Ishida, K., Roth, M. & Hertweck, C. Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew. Chem. Int. Ed. 49, 2011–2013 (2010).

    Article  CAS  Google Scholar 

  124. Rischer, M. et al. Biosynthesis, synthesis, and activities of barnesin A, a NRPS–PKS hybrid produced by an anaerobic Epsilonproteobacterium. ACS Chem. Biol. 13, 1990–1995 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Andrianasolo, E. H. et al. Ammonificins C and D, hydroxyethylamine chromene derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. Mar. Drugs 10, 2300–2311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Partida-Martinez, L. P. & Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Takeuchi, K. et al. Rhizoxin analogs contribute to the biocontrol activity of a newly isolated Pseudomonas strain. Mol. Plant. Microbe Interact. 28, 333–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Loper, J. E. et al. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster. Environ. Microbiol. 18, 3509–3521 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Dudler, R. The role of bacterial phytotoxins in inhibiting the eukaryotic proteasome. Trends Microbiol. 22, 28–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Schellenberg, B., Bigler, L. & Dudler, R. Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ. Microbiol. 9, 1640–1650 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Stein, M. L. et al. One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor. Proc. Natl Acad. Sci. USA 109, 18367–18371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Waspi, U., Blanc, D., Winkler, T., Ruedi, P. & Dudler, R. Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice. Mol. Plant. Microbe 11, 727–733 (1998).

    Article  CAS  Google Scholar 

  133. Piel, J. et al. Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J. Nat. Prod. 68, 472–479 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Piel, J. A polyketide synthase–peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl Acad. Sci. USA 99, 14002–14007 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nakabachi, A. et al. Defensive bacteriome symbiont with a drastically reduced genome. Curr. Biol. 23, 1478–1484 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Kampa, A. et al. Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc. Natl Acad. Sci. USA 110, E3129–E3137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rust, M. et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc. Natl Acad. Sci. USA 117, 9508–9518 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Storey, M. A. et al. Metagenomic exploration of the marine sponge Mycale hentscheli uncovers multiple polyketide-producing bacterial symbionts. mBio 11, e02997 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Schleissner, C. et al. Bacterial production of a pederin analogue by a free-living marine Alphaproteobacterium. J. Nat. Prod. 80, 2170–2173 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Kust, A. et al. Discovery of a pederin family compound in a nonsymbiotic bloom-forming cyanobacterium. ACS Chem. Biol. 13, 1123–1129 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Chen, R., Wong, H. L. & Burns, B. P. New approaches to detect biosynthetic gene clusters in the environment. Medicines 6, 32 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  142. Dittmann, E., Gugger, M., Sivonen, K. & Fewer, D. P. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol. 23, 642–652 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Long, R. A. & Azam, F. Antagonistic interactions among marine pelagic bacteria. Appl. Environ. Microbiol. 67, 4975–4983 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Villar, E. et al. The Ocean Gene Atlas: exploring the biogeography of plankton genes online. Nucleic Acids Res. 46, W289–W295 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rateb, M. E. et al. Chaxamycins A–D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. J. Nat. Prod. 74, 1491–1499 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    Article  PubMed  CAS  Google Scholar 

  147. Kong, D. X., Jiang, Y. Y. & Zhang, H. Y. Marine natural products as sources of novel scaffolds: achievement and concern. Drug Discov. Today 15, 884–886 (2010).

    Article  PubMed  Google Scholar 

  148. Jensen, P. R., Moore, B. S. & Fenical, W. The marine actinomycete genus Salinispora: a model organism for secondary metabolite discovery. Nat. Prod. Rep. 32, 738–751 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bister, B. et al. Abyssomicin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew. Chem. Int. Ed. 43, 2574–2576 (2004).

    Article  CAS  Google Scholar 

  150. Felder, S. et al. Salimyxins and enhygrolides: antibiotic, sponge-related metabolites from the obligate marine myxobacterium Enhygromyxa salina. Chembiochem 14, 1363–1371 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Luesch, H., Yoshida, W. Y., Moore, R. E., Paul, V. J. & Corbett, T. H. Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J. Am. Chem. Soc. 123, 5418–5423 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Liu, Y., Law, B. K. & Luesch, H. Apratoxin a reversibly inhibits the secretory pathway by preventing cotranslational translocation. Mol. Pharmacol. 76, 91–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Hong, J. & Luesch, H. Largazole: from discovery to broad-spectrum therapy. Nat. Prod. Rep. 29, 449–456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Walter, J. M. et al. Ecogenomics of the marine benthic filamentous Cyanobacterium adonisia. Microb. Ecol. 80, 249–265 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Offret, C. et al. Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Mar. Drugs 14, 129 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  156. Silva, S. G., Blom, J., Keller-Costa, T. & Costa, R. Comparative genomics reveals complex natural product biosynthesis capacities and carbon metabolism across host-associated and free-living Aquimarina (Bacteroidetes, Flavobacteriaceae) species. Environ. Microbiol. 21, 4002–4019 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Sobolevskaya, M. P. et al. Controlling production of brominated cyclic depsipeptides by Pseudoalteromonas maricaloris KMM 636T. Lett. Appl. Microbiol. 40, 243–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Shiozawa, H. et al. Thiomarinol, a new hybrid antimicrobial antibiotic produced by a marine bacterium fermentation, isolation, structure, and antimicrobial activity. J. Antibiot. 46, 1834–1842 (1993).

    Article  CAS  Google Scholar 

  159. Elshahawi, S. I. et al. Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills. Proc. Natl Acad. Sci. USA 110, E295–E304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chevrette, M. G. et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat. Commun. 10, 516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kroiss, J. et al. Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat. Chem. Biol. 6, 261–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Nyholm, S. V. In the beginning: egg–microbe interactions and consequences for animal hosts. Phil. Trans. R. Soc. B 375, 20190593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kador, M., Horn, M. A. & Dettner, K. Novel oligonucleotide probes for in situ detection of pederin-producing endosymbionts of Paederus riparius rove beetles (Coleoptera: Staphylinidae). FEMS Microbiol. Lett. 319, 73–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Florez, L. V., Biedermann, P. H., Engl, T. & Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 32, 904–936 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Daniel-Ivad, M., Pimentel-Elardo, S. & Nodwell, J. R. Control of specialized metabolism by signaling and transcriptional regulation: opportunities for new platforms for drug discovery? Annu. Rev. Microbiol. 72, 25–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Shi, Y. et al. Synthetic multispecies microbial communities reveals shifts in secondary metabolism and facilitates cryptic natural product discovery. Environ. Microbiol. 19, 3606–3618 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Adnani, N. et al. Coculture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, keyicin. ACS Chem. Biol. 12, 3093–3102 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zipperer, A. et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Bitschar, K. et al. Lugdunin amplifies innate immune responses in the skin in synergy with host- and microbiota-derived factors. Nat. Commun. 10, 2730 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Korp, J., Vela Gurovic, M. S. & Nett, M. Antibiotics from predatory bacteria. Beilstein J. Org. Chem. 12, 594–607 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Xiao, Y., Wei, X., Ebright, R. & Wall, D. Antibiotic production by myxobacteria plays a role in predation. J. Bacteriol. 193, 4626–4633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Schieferdecker, S. et al. Structure and biosynthetic assembly of gulmirecins, macrolide antibiotics from the predatory bacterium Pyxidicoccus fallax. Chemistry 20, 15933–15940 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Baumann, S. et al. Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew. Chem. Int. Ed. 53, 14605–14609 (2014).

    Article  CAS  Google Scholar 

  174. Jansen, R., Irschik, H., Reichenbach, H. & Hofle, G. Antibiotics from gliding bacteria, LXXX. Chivosazoles A–F: novel antifungal and cytotoxic macrolides from Sorangium cellulosum (myxobacteria). Liebigs Ann. Recl. 1997, 1725–1732 (1997).

    Article  Google Scholar 

  175. Rachid, S., Gerth, K., Kochems, I. & Müller, R. Deciphering regulatory mechanisms for secondary metabolite production in the myxobacterium Sorangium cellulosum So ce56. Mol. Microbiol. 63, 1783–1796 (2007).

    Article  CAS  PubMed  Google Scholar 

  176. Schiefer, A. et al. Corallopyronin A for short-course anti-wolbachial, macrofilaricidal treatment of filarial infections. PLoS Negl. Trop. Dis. 14, e0008930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Arp, J. et al. Synergistic activity of cosecreted natural products from amoebae-associated bacteria. Proc. Natl Acad. Sci. USA 115, 3758–3763 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Oh, D. C., Scott, J. J., Currie, C. R. & Clardy, J. Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org. Lett. 11, 633–636 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Van Arnam, E. B., Ruzzini, A. C., Sit, C. S., Currie, C. R. & Clardy, J. A rebeccamycin analog provides plasmid-encoded niche defense. J. Am. Chem. Soc. 137, 14272–14274 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Beemelmanns, C. et al. Macrotermycins A–D, glycosylated macrolactams from a termite-associated Amycolatopsis sp. M39. Org. Lett. 19, 1000–1003 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Zan, J. et al. A microbial factory for defensive kahalalides in a tripartite marine symbiosis. Science 364, eaaw6732 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  185. Crits-Christoph, A., Diamond, S., Butterfield, C. N., Thomas, B. C. & Banfield, J. F. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. Nature 558, 440–444 (2018).

    Article  CAS  PubMed  Google Scholar 

  186. Rappe, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002).

    Article  CAS  PubMed  Google Scholar 

  187. Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M. & Sait, M. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68, 2391–2396 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Nguyen, T. M. et al. Effective soil extraction method for cultivating previously uncultured soil bacteria. Appl. Environ. Microbiol. 84, e01145 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Condren, A. R. et al. Addition of insoluble fiber to isolation media allows for increased metabolite diversity of lab-cultivable microbes derived from zebrafish gut samples. Gut Microbes 11, 1064–1076 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Lagier, J. C. et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol. 1, 16203 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Tyson, G. W. et al. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl. Environ. Microbiol. 71, 6319–6324 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cross, K. L. et al. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat. Biotechnol. 37, 1314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nichols, D. et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ling, L. L. et al. A new antibiotic kills pathogens without detectable resistance. Nature 517, 455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ueoka, R. et al. Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. Nat. Chem. Biol. 11, 705–712 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. He, H. et al. Cyanobufalins: cardioactive toxins from cyanobacterial blooms. J. Nat. Prod. 81, 2576–2581 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Craig, J. W., Chang, F. Y., Kim, J. H., Obiajulu, S. C. & Brady, S. F. Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl. Environ. Microbiol. 76, 1633–1641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Long, P. F., Dunlap, W. C., Battershill, C. N. & Jaspars, M. Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. Chembiochem 6, 1760–1765 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Theodorou, E., Scanga, R., Twardowski, M., Snyder, M. P. & Brouzes, E. A droplet microfluidics based platform for mining metagenomic libraries for natural compounds. Micromachines 8, 230 (2017).

    Article  PubMed Central  Google Scholar 

  200. Brady, S. F. Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat. Protoc. 2, 1297–1305 (2007).

    Article  CAS  PubMed  Google Scholar 

  201. Huo, L. et al. Heterologous expression of bacterial natural product biosynthetic pathways. Nat. Prod. Rep. 36, 1412–1436 (2019).

    Article  CAS  PubMed  Google Scholar 

  202. Bitok, J. K., Lemetre, C., Ternei, M. A. & Brady, S. F. Identification of biosynthetic gene clusters from metagenomic libraries using PPTase complementation in a Streptomyces host. FEMS Microbiol. Lett. 364, fnx155 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  203. Iqbal, H. A., Low-Beinart, L., Obiajulu, J. U. & Brady, S. F. Natural product discovery through improved functional metagenomics in Streptomyces. J. Am. Chem. Soc. 138, 9341–9344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chang, F. Y., Ternei, M. A., Calle, P. Y. & Brady, S. F. Targeted metagenomics: finding rare tryptophan dimer natural products in the environment. J. Am. Chem. Soc. 137, 6044–6052 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Charlop-Powers, Z. et al. Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. Proc. Natl Acad. Sci. USA 113, 14811–14816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kang, H. S. & Brady, S. F. Arixanthomycins A–C: phylogeny-guided discovery of biologically active eDNA-derived pentangular polyphenols. ACS Chem. Biol. 9, 1267–1272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Kim, J. H. et al. Cloning large natural product gene clusters from the environment: piecing environmental DNA gene clusters back together with TAR. Biopolymers 93, 833–844 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hrvatin, S. & Piel, J. Rapid isolation of rare clones from highly complex DNA libraries by PCR analysis of liquid gel pools. J. Microbiol. Methods 68, 434–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  209. Libis, V. et al. Uncovering the biosynthetic potential of rare metagenomic DNA using co-occurrence network analysis of targeted sequences. Nat. Commun. 10, 3848 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Saeed, I., Tang, S. L. & Halgamuge, S. K. Unsupervised discovery of microbial population structure within metagenomes using nucleotide base composition. Nucleic Acids Res. 40, e34 (2012).

    Article  CAS  PubMed  Google Scholar 

  211. Donia, M. S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Agarwal, V. et al. Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat. Chem. Biol. 13, 537–543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kwan, J. C. et al. Genome streamlining and chemical defense in a coral reef symbiosis. Proc. Natl Acad. Sci. USA 109, 20655–20660 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sudek, S. et al. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J. Nat. Prod. 70, 67–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  215. Mori, T. et al. Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc. Natl Acad. Sci. USA 115, 1718–1723 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Tianero, M. D., Balaich, J. N. & Donia, M. S. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. Nat. Microbiol. 4, 1149–1159 (2019).

    Article  CAS  PubMed  Google Scholar 

  217. Schofield, M. M., Jain, S., Porat, D., Dick, G. J. & Sherman, D. H. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. Environ. Microbiol. 17, 3964–3975 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Sun, M. K. & Alkon, D. L. Bryostatin-1: pharmacology and therapeutic potential as a CNS drug. CNS Drug Rev. 12, 1–8 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Miguel-Lillo, B., Valenzuela, B., Peris-Ribera, J. E., Soto-Matos, A. & Perez-Ruixo, J. J. Population pharmacokinetics of kahalalide F in advanced cancer patients. Cancer Chemother. Pharmacol. 76, 365–374 (2015).

    Article  CAS  PubMed  Google Scholar 

  220. Gaitanos, T. N. et al. Peloruside A does not bind to the taxoid site on β-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res. 64, 5063–5067 (2004).

    Article  CAS  PubMed  Google Scholar 

  221. Schmidt, E. W. et al. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl Acad. Sci. USA 102, 7315–7320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Smith, T. E. et al. Accessing chemical diversity from the uncultivated symbionts of small marine animals. Nat. Chem. Biol. 14, 179–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Piel, J. & Cahn, J. Opening up the single-cell toolbox for microbial natural products research. Angew. Chem. Int. Ed. Engl. 60, 18412–18428 (2019).

    Google Scholar 

  224. Grindberg, R. V. et al. Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS ONE 6, e18565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Miyaoka, R. et al. In situ detection of antibiotic amphotericin B produced in Streptomyces nodosus using Raman microspectroscopy. Mar. Drugs 12, 2827–2839 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lee, K. S. et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat. Microbiol. 4, 1035–1048 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    Article  CAS  PubMed  Google Scholar 

  228. Elfeki, M., Alanjary, M., Green, S. J., Ziemert, N. & Murphy, B. T. Assessing the efficiency of cultivation techniques to recover natural product biosynthetic gene populations from sediment. ACS Chem. Biol. 13, 2074–2081 (2018).

    Article  CAS  PubMed  Google Scholar 

  229. Ju, K. S. et al. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proc. Natl Acad. Sci. USA 112, 12175–12180 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Letzel, A. C. et al. Genomic insights into specialized metabolism in the marine actinomycete Salinispora. Environ. Microbiol. 19, 3660–3673 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome Project: successes and aspirations. BMC Biol. 12, 69 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Eckert, E. M. et al. Every fifth published metagenome is not available to science. PLoS Biol. 18, e3000698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Chassagne, F., Cabanac, G., Hubert, G., David, B. & Marti, G. The landscape of natural product diversity and their pharmacological relevance from a focus on the Dictionary of Natural Products®. Phytochem. Rev. 18, 601–622 (2019).

    Article  CAS  Google Scholar 

  234. Walker, A. S. & Clardy, J. A machine learning bioinformatics method to predict biological activity from biosynthetic gene clusters. J. Chem. Inf. Model. 61, 2560–2571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Mast, Y. et al. Characterization of the ‘pristinamycin supercluster’ of Streptomyces pristinaespiralis. Microb. Biotechnol. 4, 192–206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Mrak, P. et al. Discovery of the actinoplanic acid pathway in Streptomyces rapamycinicus reveals a genetically conserved synergism with rapamycin. J. Biol. Chem. 293, 19982–19995 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. McCauley, E. P. et al. Highlights of marine natural products having parallel scaffolds found from marine-derived bacteria, sponges, and tunicates. J. Antibiot. 73, 504–525 (2020).

    Article  CAS  Google Scholar 

  238. Wakimoto, T. et al. Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nat. Chem. Biol. 10, 648–655 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.P. acknowledges funding by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 742739), the Gordon and Betty Moore Foundation (#9204, https://doi.org/10.37807/GBMF9204), the Swiss National Science Foundation (205320_185077 and NRP 72 ‘Antimicrobial resistance’, 407240_167051), the Helmut Horten Foundation and the Promedica Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jörn Piel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Ronald Quinn and other anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Natural Product Magnetic Resonance Database Project: http://www.np-mrd.org

Glossary

Dereplication

The process of recognizing already known biosynthetic gene clusters (BGCs) or compounds and eliminating them from downstream analysis.

Biosynthetic gene clusters

(BGCs). Gene loci encoding proteins involved in natural product (NP) biosynthesis, resistance and regulation.

Congeners

Structurally related compounds with overall high similarity.

Metagenomics

Methods that explore mixed communities at the DNA level.

Maturases

Enzymes modifying ribosomally synthesized and post-translationally modified peptide (RiPP) precursors or proteins.

Siderophores

Compounds able to complex iron with high affinity.

Mutualists

Members of a beneficial symbiosis.

Microbial dark matter

The large and as yet poorly explored portion of microbial diversity that has eluded laboratory cultivation.

Contigs

Sets of overlapping DNA sequencing reads from the same genomic source.

Binning

The computational grouping of contigs with shared DNA properties, such as sequence coverage or oligonucleotide frequency, after metagenome sequencing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmerling, F., Piel, J. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nat Rev Drug Discov 21, 359–378 (2022). https://doi.org/10.1038/s41573-022-00414-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-022-00414-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research