Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Motile ciliopathies

Abstract

Motile cilia are highly complex hair-like organelles of epithelial cells lining the surface of various organ systems. Genetic mutations (usually with autosomal recessive inheritance) that impair ciliary beating cause a variety of motile ciliopathies, a heterogeneous group of rare disorders. The pathogenetic mechanisms, clinical symptoms and severity of the disease depend on the specific affected genes and the tissues in which they are expressed. Defects in the ependymal cilia can result in hydrocephalus, defects in the cilia in the fallopian tubes or in sperm flagella can cause female and male subfertility, respectively, and malfunctional motile monocilia of the left–right organizer during early embryonic development can lead to laterality defects such as situs inversus and heterotaxy. If mucociliary clearance in the respiratory epithelium is severely impaired, the disorder is referred to as primary ciliary dyskinesia, the most common motile ciliopathy. No single test can confirm a diagnosis of motile ciliopathy, which is based on a combination of tests including nasal nitric oxide measurement, transmission electron microscopy, immunofluorescence and genetic analyses, and high-speed video microscopy. With the exception of azithromycin, there is no evidence-based treatment for primary ciliary dyskinesia; therapies aim at relieving symptoms and reducing the effects of reduced ciliary motility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical manifestations of motile ciliopathies.
Fig. 2: Cilium structure in respiratory epithelial cells.
Fig. 3: Genetic analysis.
Fig. 4: Cilium assembly.
Fig. 5: Transmission electron microscopy and immunofluorescence analysis of healthy cilia.
Fig. 6: Transmission electron microscopy and immunofluorescence analysis of cilia defects.

Similar content being viewed by others

References

  1. Fliegauf, M., Benzing, T. & Omran, H. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8, 880–893 (2007).

    CAS  PubMed  Google Scholar 

  2. Reiter, J. F. & Leroux, M. R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533–547 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kennedy, M. P. et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115, 2814–2821 (2007). This article reports, for the first time, the presence of situs ambiguus (heterotaxy) in a fraction of patients with well-characterized primary ciliary dyskinesia.

    PubMed  Google Scholar 

  4. Essner, J. J. et al. Conserved function for embryonic nodal cilia. Nature 418, 37–38 (2002).

    CAS  PubMed  Google Scholar 

  5. Shapiro, A. J. et al. Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest 146, 1176–1186 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Nöthe-Menchen, T. et al. Randomization of left-right asymmetry and congenital heart defects. Circ. Genomic Precis. Med. https://doi.org/10.1161/CIRCGEN.119.002686 (2019).

  7. Pennekamp, P., Menchen, T., Dworniczak, B. & Hamada, H. Situs inversus and ciliary abnormalities: 20 years later, what is the connection? Cilia 4, 1 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Höben, I. M. et al. Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of left/right body asymmetry due to defects of outer and inner dynein arms. Am. J. Hum. Genet. 102, 973–984 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Vervoort, R. & Wright, A. F. Mutations of RPGR in X-linked retinitis pigmentosa (RP3). Hum. Mutat. 19, 486–500 (2002).

    CAS  PubMed  Google Scholar 

  10. Ferrante, M. I. et al. Identification of the gene for oral-facial-digital type I syndrome. Am. J. Hum. Genet. 68, 569–576 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Paff, T. et al. Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am. J. Hum. Genet. 100, 160–168 (2017).

    CAS  PubMed  Google Scholar 

  12. Wallmeier, J. et al. De novo mutations in FOXJ1 result in a motile ciliopathy with hydrocephalus and randomization of left/right body asymmetry. Am. J. Hum. Genet. 105, 1030–1039 (2019). This article describes an autosomal dominant trait with de novo mutations; additionally, this study reports hydrocephalus in all individuals with this novel motile ciliopathy.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lucas, J. S. et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 49, 1601090 (2017). European guidelines to diagnose primary ciliary dyskinesia.

    PubMed  PubMed Central  Google Scholar 

  14. Shapiro, A. J. et al. Diagnosis of primary ciliary dyskinesia. An official American Thoracic Society clinical practice guideline. Am. J. Respir. Crit. Care Med. 197, e24–e39 (2018). North American guidelines to diagnose primary ciliary dyskinesia.

    PubMed  PubMed Central  Google Scholar 

  15. Zariwala, M. A., Knowles, M. R. & Leigh, M. W. Primary ciliary dyskinesia. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK1122 (updated 5 Dec 2019). Comprehensive review article that remains current as it is periodically updated, providing cohesive descriptions of the clinical phenotype, genetics, association of genetics with ciliary ultrastructure, various modes of inheritances and counselling directions.

  16. Kobbernagel, H. E. et al. Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): a multicentre, double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 8, 493–505 (2020). The first randomized controlled trial on pharmacotherapy to provide evidence-based treatment for patients with primary ciliary dyskinesia by demonstrating that azithromycin maintenance therapy can halve the frequency of respiratory exacerbations.

    CAS  PubMed  Google Scholar 

  17. Torgersen, J. Transposition of viscera, bronchiectasis and nasal polyps; a genetical analysis and a contribution to the problem of constitution. Acta Radiol. 28, 17–24 (1947).

    CAS  PubMed  Google Scholar 

  18. Katsuhara, K., Kawamoto, S., Wakabayashi, T. & Belsky, J. L. Situs inversus totalis and Kartagener’s syndrome in a Japanese population. Chest 61, 56–61 (1972).

    CAS  PubMed  Google Scholar 

  19. Ardura-Garcia, C. et al. Registries and collaborative studies for primary ciliary dyskinesia in Europe. ERJ Open Res. 6, 00005–02020 (2020). An overview of datasets and resources for epidemiological and clinical research in primary ciliary dyskinesia, describing in detail the ERN lung registry, the iPCD cohort and national registries.

    PubMed  PubMed Central  Google Scholar 

  20. Afzelius, B. A. & Stenram, U. Prevalence and genetics of immotile-cilia syndrome and left-handedness. Int. J. Dev. Biol. 50, 571–573 (2006).

    CAS  PubMed  Google Scholar 

  21. Kuehni, C. E. et al. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur. Respir. J. 36, 1248–1258 (2010).

    CAS  PubMed  Google Scholar 

  22. O’Callaghan, C., Chetcuti, P. & Moya, E. High prevalence of primary ciliary dyskinesia in a British Asian population. Arch. Dis. Child. 95, 51–52 (2010).

    PubMed  Google Scholar 

  23. Onoufriadis, A. et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am. J. Hum. Genet. 92, 88–98 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Halbeisen, F. S. et al. Time trends in diagnostic testing for primary ciliary dyskinesia in Europe. Eur. Respir. J. 54, 1900528 (2019).

    PubMed  Google Scholar 

  25. Fassad, M. R. et al. Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort. J. Med. Genet. https://doi.org/10.1136/jmedgenet-2019-106501 (2019).

    Article  PubMed  Google Scholar 

  26. McCallum, G. B. & Binks, M. J. The epidemiology of chronic suppurative lung disease and bronchiectasis in children and adolescents. Front. Pediatr. 5, 27 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Dhar, R. et al. Bronchiectasis in India: results from the European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC) and Respiratory Research Network of India Registry. Lancet Glob. Heal. 7, e1269–e1279 (2019).

    Google Scholar 

  28. Rumman, N. et al. Diagnosis of primary ciliary dyskinesia: potential options for resource-limited countries. Eur. Respir. Rev. 26, 160058 (2017).

    PubMed  Google Scholar 

  29. Goutaki, M. et al. The international primary ciliary dyskinesia cohort (iPCD cohort): methods and first results. Eur. Respir. J. 49, 1601181 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Behan, L. et al. Diagnosing primary ciliary dyskinesia: an international patient perspective. Eur. Respir. J. 48, 1096–1107 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Frija-Masson, J. et al. Clinical characteristics, functional respiratory decline and follow-up in adult patients with primary ciliary dyskinesia. Thorax 72, 154–160 (2017).

    PubMed  Google Scholar 

  32. Shah, A. et al. A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur. Respir. J. 48, 441–450 (2016).

    PubMed  Google Scholar 

  33. Noone, P. G. et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am. J. Respir. Crit. Care Med. 169, 459–467 (2004).

    PubMed  Google Scholar 

  34. Marthin, J. K., Petersen, N., Skovgaard, L. T. & Nielsen, K. G. Lung function in patients with primary ciliary dyskinesia: a cross-sectional and 3-decade longitudinal study. Am. J. Respir. Crit. Care Med. 181, 1262–1268 (2010).

    PubMed  Google Scholar 

  35. Magnin, M. L. et al. Longitudinal lung function and structural changes in children with primary ciliary dyskinesia. Pediatr. Pulmonol. 47, 816–825 (2012).

    PubMed  Google Scholar 

  36. Halbeisen, F. S. et al. Lung function in patients with primary ciliary dyskinesia: an iPCD cohort study. Eur. Respir. J. 52, 1801040 (2018). Reliable retrospective data for spirometry are analysed from 991 patients aged ≥6 years and demonstrate that children have the best lung function, which deteriorate with increasing age.

    PubMed  Google Scholar 

  37. Goutaki, M. et al. Growth and nutritional status, and their association with lung function: a study from the international primary ciliary dyskinesia cohort. Eur. Respir. J. 50, 1701659 (2017).

    PubMed  Google Scholar 

  38. Marino, L. V. et al. Characterising the nutritional status of children with primary ciliary dyskinesia. Clin. Nutr. 38, 2127–2135 (2019).

    CAS  PubMed  Google Scholar 

  39. Boon, M. et al. Primary ciliary dyskinesia: critical evaluation of clinical symptoms and diagnosis in patients with normal and abnormal ultrastructure. Orphanet J. Rare Dis. https://doi.org/10.1186/1750-1172-9-11 (2014).

  40. Davis, S. D. et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am. J. Respir. Crit. Care Med. 191, 316–324 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Davis, S. D. et al. Primary ciliary dyskinesia: longitudinal study of lung disease by ultrastructure defect and genotype. Am. J. Respir. Crit. Care Med. 199, 190–198 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stallings, V. A., Stark, L. J., Robinson, K. A., Feranchak, A. P. & Quinton, H. Evidence-based practice recommendations for nutrition-related management of children and adults with cystic fibrosis and pancreatic insufficiency: results of a systematic review. J. Am. Diet. Assoc. 108, 832–839 (2008).

    PubMed  Google Scholar 

  43. Goutaki, M. et al. Standardised clinical data from patients with primary ciliary dyskinesia: FOLLOW-PCD. ERJ Open Res. 6, 00237–02019 (2020).

    PubMed  PubMed Central  Google Scholar 

  44. Shah, A. S., Ben-Shahar, Y., Moninger, T. O., Kline, J. N. & Welsh, M. J. Motile cilia of human airway epithelia are chemosensory. Science 325, 1131–1134 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Burgoyne, T., Dixon, M., Luther, P., Hogg, C. & Shoemark, A. Generation of a three-dimensional ultrastructural model of human respiratory cilia. Am. J. Respir. Cell Mol. Biol. 47, 800–806 (2012).

    CAS  PubMed  Google Scholar 

  46. Heuser, T., Raytchev, M., Krell, J., Porter, M. E. & Nicastro, D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J. Cell Biol. 187, 921–933 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Oda, T., Yanagisawa, H., Kamiya, R. & Kikkawa, M. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346, 857–860 (2014).

    CAS  PubMed  Google Scholar 

  48. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    CAS  PubMed  Google Scholar 

  49. Brokaw, C. J. & Kamiya, R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil. Cytoskeleton 8, 68–75 (1987).

    CAS  PubMed  Google Scholar 

  50. Fliegauf, M. et al. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 171, 1343–1349 (2005). This article shows for the first time in a systematic way that immunofluorescence microscopy analyses can detect defects of the outer dynein arms in primary ciliary dyskinesia and additionally reports that human respiratory cilia contain two distinct types of outer dynein arm along the ciliary axoneme.

    PubMed  PubMed Central  Google Scholar 

  51. Dougherty, G. W. et al. DNAH11 localization in the proximal region of respiratory cilia defines distinct outer dynein arm complexes. Am. J. Respir. Cell Mol. Biol. 55, 213–224 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Loges, N. T. et al. Recessive DNAH9 loss-of-function mutations cause laterality defects and subtle respiratory ciliary-beating defects. Am. J. Hum. Genet. 103, 995–1008 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Whitfield, M. et al. Mutations in DNAH17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to asthenozoospermia. Am. J. Hum. Genet. 105, 198–212 (2019). The report demonstrates the presence of a distinct third ODA type in sperm flagella containing ODA heavy chains DNAH8 and DNAH17 and demonstrates DNAH17 mutations resulting in the motile ciliopathy solely characterized by sperm flagella abnormalities.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Barber, C. F., Heuser, T., Carbajal-González, B. I., Botchkarev, V. V. & Nicastro, D. Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella. Mol. Biol. Cell 23, 111–120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Satir, P. Studies on cilia. 3. Further studies on the cilium tip and a ‘sliding filament’ model of ciliary motility. J. Cell Biol. 39, 77–94 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gardner, L. C., O’Toole, E., Perrone, C. A., Giddings, T. & Porter, M. E. Components of a ‘dynein regulatory complex’ are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella. J. Cell Biol. 127, 1311–1325 (1994).

    CAS  PubMed  Google Scholar 

  57. Piperno, G., Mead, K. & Shestak, W. The inner dynein arms I2 interact with a ‘dynein regulatory complex’ in Chlamydomonas flagella. J. Cell Biol. 118, 1455–1463 (1992).

    CAS  PubMed  Google Scholar 

  58. Smith, E. F. & Yang, P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. Cell Motil. Cytoskeleton 57, 8–17 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma, M. et al. Structure of the decorated ciliary doublet microtubule. Cell 179, 909–922.e12 (2019).

    CAS  PubMed  Google Scholar 

  60. Raidt, J. et al. Ciliary beat pattern and frequency in genetic variants of primary ciliary dyskinesia. Eur. Respir. J. 44, 1579–1588 (2014).

    CAS  PubMed  Google Scholar 

  61. Chilvers, M. A., Rutman, A. & O’Callaghan, C. Functional analysis of cilia and ciliated epithelial ultrastructure in healthy children and young adults. Thorax 58, 333–338 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Raidt, J. et al. Ciliary function and motor protein composition of human fallopian tubes. Hum. Reprod. 30, 2871–2880 (2015).

    CAS  PubMed  Google Scholar 

  63. Ibañez-Tallon, I., Gorokhova, S. & Heintz, N. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum. Mol. Genet. 11, 715–721 (2002).

    PubMed  Google Scholar 

  64. Ibañez-Tallon, I. et al. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum. Mol. Genet. 13, 2133–2141 (2004). This article shows that the motility defect of ependymal cilia in Dnahc5 (also known as Mdnah5)-mutant mice inhibits movement of cerebrospinal fluid through the aqueduct (ependymal flow), which results in hydrocephalus formation during late brain development, and that this mechanism also has a role in human hydrocephalus formation.

    PubMed  Google Scholar 

  65. O’Callaghan, C., Sikand, K. & Chilvers, M. A. Analysis of ependymal ciliary beat pattern and beat frequency using high speed imaging: comparison with the photomultiplier and photodiode methods. Cilia 1, 8 (2012).

    PubMed  PubMed Central  Google Scholar 

  66. Saggiorato, G. et al. Human sperm steer with second harmonics of the flagellar beat. Nat. Commun. 8, (2017).

  67. Wirschell, M. et al. The nexin–dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat. Genet. 45, 262–268 (2013).

    CAS  PubMed  Google Scholar 

  68. Horani, A. et al. CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia. PLoS ONE 8, e72299 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Olbrich, H. et al. Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin–dynein regulatory complex. Am. J. Hum. Genet. 97, 546–554 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Merveille, A.-C. C. et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 43, 72–78 (2011).

    CAS  PubMed  Google Scholar 

  71. Becker-Heck, A. et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat. Genet. 43, 79–84 (2011). CCDC40 mutations result in a variant of primary ciliary dyskinesia characterized by microtubular disorganization and defective assembly of inner dynein arms and dynein regulatory complexes.

    CAS  PubMed  Google Scholar 

  72. Antony, D. et al. Mutations in CCDC 39 and CCDC 40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum. Mutat. 34, 462–472 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Knowles, M. R. et al. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am. J. Respir. Crit. Care Med. 189, 707–717 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jeanson, L. et al. RSPH3 mutations cause primary ciliary dyskinesia with central-complex defects and a near absence of radial spokes. Am. J. Hum. Genet. 97, 153–162 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Casey, J. P. et al. Unexpected genetic heterogeneity for primary ciliary dyskinesia in the Irish Traveller population. Eur. J. Hum. Genet. 23, 210–217 (2015).

    CAS  PubMed  Google Scholar 

  76. Castleman, V. H. et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am. J. Hum. Genet. 84, 197–209 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. El Khouri, E. et al. Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. Am. J. Hum. Genet. 99, 489–500 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Anderegg, L. et al. NME5 frameshift variant in Alaskan Malamutes with primary ciliary dyskinesia. PLoS Genet. 15, e1008378 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kott, E. et al. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with central-complex and radial-spoke defects. Am. J. Hum. Genet. 93, 561–570 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Olbrich, H. et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum. Genet. 91, 672–684 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cindrić, S. et al. SPEF2- and HYDIN-mutant cilia lack the central pair associated protein SPEF2 aiding PCD diagnostics. Am. J. Respir. Cell Mol. Biol. https://doi.org/10.1165/rcmb.2019-0086OC (2019).

    Article  Google Scholar 

  82. Edelbusch, C. et al. Mutation of serine/threonine protein kinase 36 (STK36) causes primary ciliary dyskinesia with a central pair defect. Hum. Mutat. 38, 964–969 (2017).

    CAS  PubMed  Google Scholar 

  83. Bustamante-Marin, X. M. et al. Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J. Hum. Genet. https://doi.org/10.1038/s10038-019-0686-1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Owa, M. et al. Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nat. Commun. 10, 1143 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. Sigg, M. A. et al. Evolutionary proteomics uncovers ancient associations of cilia with signaling pathways. Dev. Cell 43, 744–762.e11 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Narasimhan, V. et al. Mutations in CCDC11, which encodes a coiled-coil containing ciliary protein, causes situs inversus due to dysmotility of monocilia in the left-right organizer. Hum. Mutat. 36, 307–318 (2015).

    CAS  PubMed  Google Scholar 

  87. Ta-Shma, A. et al. A human laterality disorder associated with a homozygous WDR16 deletion. Eur. J. Hum. Genet. 23, 1262–1265 (2015).

    CAS  PubMed  Google Scholar 

  88. Ta-Shma, A. et al. Homozygous loss-of-function mutations in MNS1 cause laterality defects and likely male infertility. PLoS Genet. 14, e1007602 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Reish, O. et al. A homozygous Nme7 mutation is associated with situs inversus totalis. Hum. Mutat. 37, 727–731 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bustamante-Marin, X. M. et al. Lack of GAS2L2 causes PCD by impairing cilia orientation and mucociliary clearance. Am. J. Hum. Genet. 104, 229–245 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bukowy-Bieryłło, Z. et al. RPGR mutations might cause reduced orientation of respiratory cilia. Pediatr. Pulmonol. 48, 352–363 (2013).

    PubMed  Google Scholar 

  92. Olbrich, H. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 30, 143–144 (2002). This article reports the first mutations in the most frequently mutated gene in primary ciliary dyskinesia and demonstrates expression of Mdnah5 at the node during early mouse development, linking aberrant nodal cilia motility to laterality defects in humans.

    CAS  PubMed  Google Scholar 

  93. Fassad, M. R. et al. Mutations in outer dynein arm heavy chain DNAH9 cause motile cilia defects and situs inversus. Am. J. Hum. Genet. 103, 984–994 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Bartoloni, L. et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc. Natl Acad. Sci. USA 99, 10282–10286 (2002).

    CAS  Google Scholar 

  95. Loges, N. T. et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am. J. Hum. Genet. 83, 547–558 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Duriez, B. et al. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc. Natl Acad. Sci. USA 104, 3336–3341 (2007).

    CAS  Google Scholar 

  97. Pennarun, G. et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 65, 1508–1519 (1999). First report of a recessive mutation in a single patient with primary ciliary dyskinesia and normal body composition.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Guichard, C. et al. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am. J. Hum. Genet. 68, 1030–1035 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mazor, M. et al. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am. J. Hum. Genet. 88, 599–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, C. et al. Bi-allelic DNAH8 variants lead to multiple morphological abnormalities of the sperm flagella and primary male infertility. Am. J. Hum. Genet. https://doi.org/10.1016/j.ajhg.2020.06.004 (2020).

  101. Panizzi, J. R. et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat. Genet. 44, 714–719 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Knowles, M. R. et al. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am. J. Hum. Genet. 92, 99–106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hjeij, R. et al. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am. J. Hum. Genet. 95, 257–274 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hjeij, R. et al. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am. J. Hum. Genet. 93, 357–367 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wallmeier, J. et al. TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left–right body asymmetry randomization. Am. J. Hum. Genet. 99, 460–469 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Huizar, R. L. et al. A liquid-like organelle at the root of motile ciliopathy. eLife 7, e38497 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Omran, H. et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 456, 611–616 (2008). This article reports for the first time mutations in a gene encoding a cytoplasmic dynein arm assembly factor and demonstrates the evolutionary conserved functional consequences in Chlamydomonas, fish and humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tarkar, A. et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat. Genet. 45, 995–1003 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Loges, N. T. et al. Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am. J. Hum. Genet. 85, 883–889 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mitchison, H. M. et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat. Genet. https://doi.org/10.1038/ng.1106 (2012).

  111. Austin-Tse, C. et al. Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am. J. Hum. Genet. 93, 672–686 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Knowles, M. R. et al. Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am. J. Hum. Genet. 93, 711–720 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zariwala, M. A. et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am. J. Hum. Genet. 93, 336–345 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kott, E. et al. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am. J. Hum. Genet. 91, 958–964 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Horani, A. et al. Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am. J. Hum. Genet. 91, 685–693 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Thomas, L. et al. TTC12 loss-of-function mutations cause primary ciliary dyskinesia and unveil distinct dynein assembly mechanisms in motile cilia versus flagella. Am. J. Hum. Genet. 106, 153–169 (2020). This study identifies TTC12 as a gene involved in primary ciliary dyskinesia and unveils distinct dynein assembly mechanisms in human motile cilia versus flagella.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bonnefoy, S. et al. Biallelic mutations in LRRC56, encoding a protein associated with intraflagellar transport, cause mucociliary clearance and laterality defects. Am. J. Hum. Genet. 103, 727–739 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Stubbs, J. L., Vladar, E. K., Axelrod, J. D. & Kintner, C. Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nat. Cell Biol. 14, 140–147 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Marcet, B., Chevalier, B., Coraux, C., Kodjabachian, L. & Barbry, P. MicroRNA-based silencing of Delta/Notch signaling promotes multiple cilia formation. Cell Cycle 10, 2858–2864 (2011).

    CAS  PubMed  Google Scholar 

  120. Wallmeier, J. et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Genet. 46, 646–651 (2014). This article provides genetic evidence of a new motile ciliopathy characterized by RGMC.

    CAS  PubMed  Google Scholar 

  121. Boon, M. et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Commun. 5, 4418 (2014).

    CAS  PubMed  Google Scholar 

  122. Zhao, H. et al. The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis. Nat. Cell Biol. 15, 1434–1444 (2013).

    CAS  PubMed  Google Scholar 

  123. Tang, T. K. Centriole biogenesis in multiciliated cells. Nat. Cell Biol. 15, 1400–1402 (2013).

    CAS  PubMed  Google Scholar 

  124. Blatt, E. N., Yan, X. H., Wuerffel, M. K., Hamilos, D. L. & Brody, S. L. Forkhead transcription factor HFH-4 expression is temporally related to ciliogenesis. Am. J. Respir. Cell Mol. Biol. 21, 168–176 (1999).

    CAS  PubMed  Google Scholar 

  125. Ostrowski, L. E. et al. A proteomic analysis of human cilia: identification of novel components. Mol. Cell. Proteom. 1, 451–465 (2002).

    CAS  Google Scholar 

  126. Chivukula, R. R. et al. A human ciliopathy reveals essential functions for NEK10 in airway mucociliary clearance. Nat. Med. 26, 244–251 (2020). This article establishes NEK10 as a ciliated-cell-specific kinase whose activity regulates the motile ciliary proteome to promote ciliary length and mucociliary transport, but which is dispensable for normal ciliary number, radial structure and beat frequency.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Sung, W. S., Mclaughlin, A. & Gabizon, S. in Hydrocephalus: Symptoms, Treatment and Potential Complications (eds Cinalli, G., Memet Özek, M. & Sante-Rose, C.) 493–506 (Springer, 2013).

  128. Banizs, B. et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132, 5329–5339 (2005).

    CAS  PubMed  Google Scholar 

  129. Panigrahy, A. et al. Brain dysplasia associated with ciliary dysfunction in infants with congenital heart disease. J. Pediatr. 178, 141–148.e1 (2016).

    PubMed  PubMed Central  Google Scholar 

  130. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    CAS  PubMed  Google Scholar 

  131. Hirokawa, N., Tanaka, Y., Okada, Y. & Takeda, S. Nodal flow and the generation of left–right asymmetry. Cell 125, 33–45 (2006).

    CAS  PubMed  Google Scholar 

  132. Tabin, C. J. & Vogan, K. J. A two-cilia model for vertebrate left–right axis specification. Genes Dev. 17, 1–6 (2003).

    CAS  PubMed  Google Scholar 

  133. McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. Two populations of node monocilia initiate left–right asymmetry in the mouse. Cell 114, 61–73 (2003).

    CAS  PubMed  Google Scholar 

  134. Krausz, C. Male infertility: pathogenesis and clinical diagnosis. Best Pract. Res. Clin. Endocrinol. Metab. 25, 271–285 (2011).

    PubMed  Google Scholar 

  135. Bracke, A., Peeters, K., Punjabi, U., Hoogewijs, D. & Dewilde, S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod. Biomed. Online 36, 327–339 (2018).

    CAS  PubMed  Google Scholar 

  136. Satir, P., Heuser, T. & Sale, W. S. A structural basis for how motile cilia beat. Bioscience 64, 1073–1083 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Nsota Mbango, J.-F., Coutton, C., Arnoult, C., Ray, P. F. & Touré, A. Genetic causes of male infertility: snapshot on morphological abnormalities of the sperm flagellum. Basic. Clin. Androl. 29, 2 (2019).

    PubMed  PubMed Central  Google Scholar 

  138. Dong, F. N. et al. Absence of CFAP69 causes male infertility due to multiple morphological abnormalities of the flagella in human and mouse. Am. J. Hum. Genet. 102, 636–648 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Coutton, C. et al. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat. Commun. 9, 686 (2018). Mutations in the genes encoding CFAP43 and CFAP44 located between the doublet microtubules 5 and 6 and the paraflagellar rod cause multiple morphological abnormalities of the sperm flagella with severe disorganization of the sperm axoneme.

    PubMed  PubMed Central  Google Scholar 

  140. Hirst, R. A. et al. Culture of primary ciliary dyskinesia epithelial cells at air–liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PLoS ONE 9, e89675 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Sha, Y. et al. Biallelic mutations of CFAP74 may cause human primary ciliary dyskinesia and MMAF phenotype. J. Hum. Genet. https://doi.org/10.1038/s10038-020-0790-2 (2020).

    Article  PubMed  Google Scholar 

  142. Martinez, G. et al. Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella. Hum. Reprod. 33, 1973–1984 (2018).

    CAS  PubMed  Google Scholar 

  143. Lorès, P. et al. Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum. Mol. Genet. 27, 1196–1211 (2018).

    PubMed  Google Scholar 

  144. Sironen, A., Shoemark, A., Patel, M., Loebinger, M. R. & Mitchison, H. M. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell. Mol. Life Sci. https://doi.org/10.1007/s00018-019-03389-7 (2019). A comprehensive review article on subfertility in motile ciliopathies.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Lyons, R. A., Saridogan, E. & Djahanbakhch, O. The reproductive significance of human fallopian tube cilia. Hum. Reprod. Update 12, 363–372 (2006).

    CAS  PubMed  Google Scholar 

  146. Megaw, R. D., Soares, D. C. & Wright, A. F. RPGR: its role in photoreceptor physiology, human disease, and future therapies. Exp. Eye Res. 138, 32–41 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Garcia-Gonzalo, F. R. & Reiter, J. F. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. J. Cell Biol. 197, 697–709 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Papon, J. F. et al. Abnormal respiratory cilia in non-syndromic Leber congenital amaurosis with CEP290 mutations. J. Med. Genet. 47, 829–834 (2010).

    CAS  PubMed  Google Scholar 

  149. Macca, M. & Franco, B. The molecular basis of oral-facial-digital syndrome, type 1. Am. J. Med. Genet. Part C Semin. Med. Genet. 151C, 318–325 (2009).

    CAS  PubMed  Google Scholar 

  150. Budny, B. et al. A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum. Genet. 120, 171–178 (2006).

    CAS  Google Scholar 

  151. Bukowy-Bieryllo, Z. et al. Truncating mutations in exons 20 and 21 of OFD1 can cause primary ciliary dyskinesia without associated syndromic symptoms. J. Med. Genet. 56, 769–777 (2019).

    CAS  PubMed  Google Scholar 

  152. Hannah, W. B. et al. The expanding phenotype of OFD1-related disorders: hemizygous loss-of-function variants in three patients with primary ciliary dyskinesia. Mol. Genet. Genomic Med. 7, e911 (2019).

    PubMed  PubMed Central  Google Scholar 

  153. Wei, Q. et al. The BBSome controls IFT assembly and turnaround in cilia. Nat. Cell Biol. 14, 950–957 (2012).

    PubMed  PubMed Central  Google Scholar 

  154. Shoemark, A., Dixon, M., Beales, P. L. & Hogg, C. L. Bardet Biedl syndrome: motile ciliary phenotype. Chest 147, 764–770 (2015).

    PubMed  Google Scholar 

  155. Boerwinkle, C. et al. Respiratory manifestations in 38 patients with Alström syndrome. Pediatr. Pulmonol. 52, 487–493 (2017).

    PubMed  Google Scholar 

  156. Schmidts, M. & Beales, P. L. in Pediatric Kidney Disease 2nd edn (eds Schaefer, F. & Geary, D. F.) 305–333 (Springer, 2017).

  157. Lienkamp, S., Ganner, A. & Walz, G. Inversin, Wnt signaling and primary cilia. Differentiation 83, S49–S55 (2012).

    CAS  PubMed  Google Scholar 

  158. Otto, E. A. et al. Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left–right axis determination. Nat. Genet. 34, 413–420 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Moalem, S. et al. Broadening the ciliopathy spectrum: motile cilia dyskinesia, and nephronophthisis associated with a previously unreported homozygous mutation in the INVS/NPHP2 gene. Am. J. Med. Genet. A 161A, 1792–1796 (2013).

    PubMed  Google Scholar 

  160. Fliegauf, M. et al. Nephrocystin specifically localizes to the transition zone of renal and respiratory cilia and photoreceptor connecting cilia. J. Am. Soc. Nephrol. 17, 2424–2433 (2006).

    CAS  PubMed  Google Scholar 

  161. Schmidts, M. et al. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J. Med. Genet. 50, 309–323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Emiralioglu, N., Wallmeier, J., Olbrich, H., Omran, H. & Ozcelik, U. DYNC2H1 mutation causes Jeune syndrome and recurrent lung infections associated with ciliopathy. Clin. Respir. J. https://doi.org/10.1111/crj.12620 (2017).

    Article  PubMed  Google Scholar 

  163. Goutaki, M. et al. Clinical manifestations in primary ciliary dyskinesia: systematic review and meta-analysis. Eur. Respir. J. 48, 1081–1095 (2016).

    PubMed  Google Scholar 

  164. Mullowney, T. et al. Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics 134, 1160–1166 (2014).

    PubMed  PubMed Central  Google Scholar 

  165. Knowles, M. R., Daniels, L. A., Davis, S. D., Zariwala, M. A. & Leigh, M. W. Primary ciliary dyskinesia. recent advances in diagnostics, genetics, and characterization of clinical disease. Am. J. Respir. Crit. Care Med. 188, 913–922 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bequignon, E. et al. Critical evaluation of sinonasal disease in 64 adults with primary ciliary dyskinesia. J. Clin. Med. 8, 619 (2019).

    CAS  PubMed Central  Google Scholar 

  167. Lucas, J. S., Davis, S. D., Omran, H. & Shoemark, A. Primary ciliary dyskinesia in the genomics age. Lancet Respir. Med. 2600, 1–15 (2019).

    Google Scholar 

  168. Sagel, S. D., Davis, S. D., Campisi, P. & Dell, S. D. Update of respiratory tract disease in children with primary ciliary dyskinesia. Proc. Am. Thorac. Soc. 8, 438–443 (2011).

    PubMed  PubMed Central  Google Scholar 

  169. Boon, M. et al. Lung structure–function correlation in patients with primary ciliary dyskinesia. Thorax 70, 339–345 (2015).

    PubMed  Google Scholar 

  170. Kennedy, M. P. et al. High-resolution CT of patients with primary ciliary dyskinesia. Am. J. Roentgenol. 188, 1232–1238 (2007).

    Google Scholar 

  171. Brown, D. E., Pittman, J. E., Leigh, M. W., Fordham, L. & Davis, S. D. Early lung disease in young children with primary ciliary dyskinesia. Pediatr. Pulmonol. 43, 514–516 (2008).

    PubMed  Google Scholar 

  172. Rubbo, B. et al. Clinical features and management of children with primary ciliary dyskinesia in England. Arch. Dis. Child. 105, 724–729 (2020).

    PubMed  Google Scholar 

  173. Halbeisen, F. S. et al. Spirometric indices in primary ciliary dyskinesia: systematic review and meta-analysis. ERJ Open Res. 5, 00231–02018 (2019).

    PubMed  PubMed Central  Google Scholar 

  174. Irving, S. et al. Lung clearance index (LCI) is stable in most primary ciliary dyskinesia (PCD) patients managed in a specialist centre: a pilot study. Lung 195, 441–443 (2017).

    CAS  PubMed  Google Scholar 

  175. Green, K. et al. Ventilation inhomogeneity in children with primary ciliary dyskinesia. Thorax 67, 49–53 (2012).

    PubMed  Google Scholar 

  176. Kobbernagel, H. E. et al. One-year evolution and variability in multiple-breath washout indices in children and young adults with primary ciliary dyskinesia. Eur. Clin. Respir. J. https://doi.org/10.1080/20018525.2019.1591841 (2019).

  177. Kreicher, K. L., Schopper, H. K., Naik, A. N., Hatch, J. L. & Meyer, T. A. Hearing loss in children with primary ciliary dyskinesia. Int. J. Pediatr. Otorhinolaryngol. 104, 161–165 (2018).

    PubMed  Google Scholar 

  178. Prulière-Escabasse, V. et al. Otologic features in children with primary ciliary dyskinesia. Arch. Otolaryngol. Head. Neck Surg. 136, 1121–1126 (2010).

    PubMed  PubMed Central  Google Scholar 

  179. Andersen, T. N., Alanin, M. C., von Buchwald, C. & Nielsen, L. H. A longitudinal evaluation of hearing and ventilation tube insertion in patients with primary ciliary dyskinesia. Int. J. Pediatr. Otorhinolaryngol. 89, 164–168 (2016).

    PubMed  Google Scholar 

  180. Majithia, A., Fong, J., Hariri, M. & Harcourt, J. Hearing outcomes in children with primary ciliary dyskinesia — a longitudinal study. Int. J. Pediatr. Otorhinolaryngol. 69, 1061–1064 (2005).

    CAS  PubMed  Google Scholar 

  181. Piatti, G. et al. Cilia and ear: a study on adults affected by primary ciliary dyskinesia. Ann. Otol. Rhinol. Laryngol. 126, 322–327 (2017).

    PubMed  Google Scholar 

  182. Sommer, J. U. U. et al. ENT manifestations in patients with primary ciliary dyskinesia: prevalence and significance of otorhinolaryngologic co-morbidities. Eur. Arch. Otorhinolaryngol. 268, 383–388 (2011).

    PubMed  Google Scholar 

  183. Amirav, I. et al. Systematic analysis of CCNO variants in a defined population: implications for clinical phenotype and differential diagnosis. Hum. Mutat. 37, 396–405 (2016).

    CAS  PubMed  Google Scholar 

  184. Best, S. et al. Risk factors for situs defects and congenital heart disease in primary ciliary dyskinesia. Thorax 74, 203–205 (2019).

    PubMed  Google Scholar 

  185. Harrison, M. J., Shapiro, A. J. & Kennedy, M. P. Congenital heart disease and primary ciliary dyskinesia. Paediatr. Respir. Rev. 18, 25–32 (2016).

    PubMed  Google Scholar 

  186. Vanaken, G. J. et al. Infertility in an adult cohort with primary ciliary dyskinesia: phenotype–gene association. Eur. Respir. J. 50, 1700314 (2017).

    PubMed  Google Scholar 

  187. Afzelius, B. A. A human syndrome caused by immotile cilia. Science 193, 317–319 (1976).

    CAS  PubMed  Google Scholar 

  188. Pedersen, H. Absence of dynein arms in endometrial cilia: cause of infertility? Acta Obstet. Gynecol. Scand. 62, 625–627 (1983).

    CAS  PubMed  Google Scholar 

  189. Ben Khelifa, M. et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am. J. Hum. Genet. 94, 95–104 (2014).

    PubMed  PubMed Central  Google Scholar 

  190. Auguste, Y. et al. Loss of calmodulin- and radial-spoke-associated complex protein CFAP251 leads to immotile spermatozoa lacking mitochondria and infertility in men. Am. J. Hum. Genet. 103, 413–420 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Kahle, K. T., Kulkarni, A. V., Limbrick, D. D. & Warf, B. C. Hydrocephalus in children. Lancet 387, 788–799 (2016).

    PubMed  Google Scholar 

  192. Behan, L. et al. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur. Respir. J. 47, 1103–1112 (2016). In the PICADAR score, the presence of seven different clinical factors (term birth, chest symptoms during the neonatal period, admission to a neonatal intensive care unit, laterality defects, congenital heart defects, rhinitis and chronic ear or hearing symptoms) are taken into account to estimate the probability of primary ciliary dyskinesia.

    PubMed  PubMed Central  Google Scholar 

  193. König, J., Ermisch-Omran, B. & Omran, H. in Pediatric Kidney Disease 2nd edn (eds Schaefer, F. & Geary, D. F.) 369–390 (Springer, 2017).

  194. Drivas, T. G. & Bennett, J. in Retinal Degenerative Diseases (eds Ash, J. D. et al.) 519–525 (Springer, 2014).

  195. Schmidts, M. et al. Exome sequencing identifies mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J. Med. Genet. 50, 309–323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Shapiro, A. J. et al. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD Foundation consensus recommendations based on state of the art review. Pediatr. Pulmonol. 51, 115–132 (2016).

    PubMed  Google Scholar 

  197. Shoemark, A., Dell, S., Shapiro, A. & Lucas, J. S. ERS and ATS diagnostic guidelines for primary ciliary dyskinesia: similarities and differences in approach to diagnosis. Eur. Respir. J. 54, 1901066 (2019). This article compares the diagnostic approaches in Europe and North America to diagnose primary ciliary dyskinesia.

    PubMed  Google Scholar 

  198. Kuehni, C. E. & Lucas, J. S. Diagnosis of primary ciliary dyskinesia: summary of the ERS task force report. Breathe 13, 166–178 (2017).

    PubMed  PubMed Central  Google Scholar 

  199. Rademacher, J. et al. Nasal nitric oxide measurement and a modified PICADAR score for the screening of primary ciliary dyskinesia in adults with bronchiectasis. Pneumologie 71, 543–548 (2017).

    CAS  PubMed  Google Scholar 

  200. Li, D., Shirakami, G., Zhan, X. & Johns, R. A. Regulation of ciliary beat frequency by the nitric oxide-cyclic guanosine monophosphate signaling pathway in rat airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 23, 175–181 (2000).

    CAS  PubMed  Google Scholar 

  201. Jain, B., Rubinstein, I., Robbins, R. A., Leise, K. L. & Sisson, J. H. Modulation of airway epithelial cell ciliary beat frequency by nitric oxide. Biochem. Biophys. Res. Commun. 191, 83–88 (1993).

    CAS  PubMed  Google Scholar 

  202. Hibbs, J. B. Synthesis of nitric oxide from l-arginine: a recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res. Immunol. 142, 565–569 (1991).

    CAS  PubMed  Google Scholar 

  203. Narang, I., Ersu, R., Wilson, N. M. & Bush, A. Nitric oxide in chronic airway inflammation in children: diagnostic use and pathophysiological significance. Thorax 57, 586–589 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Wodehouse, T. et al. Nasal nitric oxide measurements for the screening of primary ciliary dyskinesia. Eur. Respir. J. 21, 43–47 (2003).

    CAS  PubMed  Google Scholar 

  205. Corbelli, R. et al. Nasal nitric oxide measurements to screen children for primary ciliary dyskinesia. Chest 126, 1054–1059 (2004).

    CAS  PubMed  Google Scholar 

  206. Leigh, M. W. et al. Standardizing nasal nitric oxide measurement as a test for primary ciliary dyskinesia. Ann. Am. Thorac. Soc. 10, 574–581 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Balfour-Lynn, I. M., Laverty, A. & Dinwiddie, R. Reduced upper airway nitric oxide in cystic fibrosis. Arch. Dis. Child. 75, 319–322 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Marthin, J. K. & Nielsen, K. G. Choice of nasal nitric oxide technique as first-line test for primary ciliary dyskinesia. Eur. Respir. J. 37, 559–565 (2011).

    CAS  PubMed  Google Scholar 

  209. Shapiro, A. J. et al. Nasal nitric oxide measurement in primary ciliary dyskinesia: a technical paper on standardized testing protocols. Ann. Am. Thorac. Soc. https://doi.org/10.1513/AnnalsATS.201904-347OT (2019).

  210. Colantonio, D., Brouillette, L., Parikh, A. & Scadding, G. K. Paradoxical low nasal nitric oxide in nasal polyposis. Clin. Exp. Allergy 32, 698–701 (2002).

    CAS  PubMed  Google Scholar 

  211. Marthin, J. K., Philipsen, M. C., Rosthoj, S. & Nielsen, K. G. Infant nasal nitric oxide over time: natural evolution and impact of respiratory tract infection. Eur. Respir. J. 51, 1702503 (2018).

    PubMed  Google Scholar 

  212. Shapiro, A. J. et al. Accuracy of nasal nitric oxide measurement as a diagnostic test for primary ciliary dyskinesia: a systematic review and meta-analysis. Ann. Am. Thorac. Soc. 14, 1184–1196 (2017). A systematic review on nasal nitric oxide management in PCD.

    PubMed  PubMed Central  Google Scholar 

  213. Collins, S. A., Gove, K., Walker, W. & Lucas, J. S. A. A. Nasal nitric oxide screening for primary ciliary dyskinesia: systematic review and meta-analysis. Eur. Respir. J. 44, 1589–1599 (2014).

    PubMed  Google Scholar 

  214. Kouis, P., Papatheodorou, S. I. & Yiallouros, P. K. Diagnostic accuracy of nasal nitric oxide for establishing diagnosis of primary ciliary dyskinesia: a meta-analysis. BMC Pulm. Med. 15, 153 (2015).

    PubMed  PubMed Central  Google Scholar 

  215. Marthin, J. K. & Nielsen, K. G. Hand-held tidal breathing nasal nitric oxide measurement — a promising targeted case-finding tool for the diagnosis of primary ciliary dyskinesia. PLoS ONE 8, e57262 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Harris, A. et al. Validation of a portable nitric oxide analyzer for screening in primary ciliary dyskinesias. BMC Pulm. Med. 14, 18 (2014).

    PubMed  PubMed Central  Google Scholar 

  217. Chilvers, M. A., Rutman, A. & O’Callaghan, C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J. Allergy Clin. Immunol. 112, 518–524 (2003).

    PubMed  PubMed Central  Google Scholar 

  218. Stannard, W. A., Chilvers, M. A., Rutman, A. R., Williams, C. D. & O’Callaghan, C. Diagnostic testing of patients suspected of primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 181, 307–314 (2010).

    PubMed  Google Scholar 

  219. Rubbo, B. et al. Accuracy of high-speed video analysis to diagnose primary ciliary dyskinesia. Chest 155, 1008–1017 (2019).

    PubMed  Google Scholar 

  220. Kouis, P. et al. Prevalence of primary ciliary dyskinesia in consecutive referrals of suspect cases and the transmission electron microscopy detection rate: a systematic review and meta-analysis. Pediatr. Res. 81, 398–405 (2017).

    CAS  PubMed  Google Scholar 

  221. Jackson, C. L. et al. Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur. Respir. J. 47, 837–848 (2016).

    CAS  PubMed  Google Scholar 

  222. Leigh, M. W. et al. Clinical features and associated likelihood of primary ciliary dyskinesia in children and adolescents. Ann. Am. Thorac. Soc. 13, 1305–1313 (2016).

    PubMed  PubMed Central  Google Scholar 

  223. Shoemark, A. et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of primary ciliary dyskinesia (BEAT PCD TEM criteria). Eur. Respir. J. 55, 1900725 (2020).

    PubMed  Google Scholar 

  224. Lin, J. et al. Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nat. Commun. 5, 5727 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Shoemark, A. et al. Primary ciliary dyskinesia with normal ultrastructure: three-dimensional tomography detects absence of DNAH11. Eur. Respir. J. 51, 1701809 (2018).

    PubMed  Google Scholar 

  226. Shoemark, A. et al. Accuracy of immunofluorescence in the diagnosis of primary ciliary dyskinesia. Am. J. Respir. Crit. Care Med. 196, 94–101 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Liu, Z. et al. A quantitative super-resolution imaging toolbox for diagnosis of motile ciliopathies. Sci. Transl. Med. 12, eaay0071 (2020).

    CAS  PubMed  Google Scholar 

  228. Omran, H. & Loges, N. T. Immunofluorescence staining of ciliated respiratory epithelial cells. Methods Cell Biol. 91, 123–133 (2009).

    CAS  PubMed  Google Scholar 

  229. Frommer, A. et al. Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects. Am. J. Respir. Cell Mol. Biol. 53, 563–573 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Schwabe, G. C. et al. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum. Mutat. 29, 289–298 (2008).

    CAS  PubMed  Google Scholar 

  231. Knowles, M. R., Zariwala, M. & Leigh, M. Primary ciliary dyskinesia. Clin. Chest Med. 37, 449–461 (2016).

    PubMed  PubMed Central  Google Scholar 

  232. Daniels, M. L. A. et al. Founder mutation in RSPH4A identified in patients of hispanic descent with primary ciliary dyskinesia. Hum. Mutat. 34, 1352–1356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Hornef, N. et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am. J. Respir. Crit. Care Med. 174, 120–126 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Failly, M. et al. Mutations in DNAH5 account for only 15% of a nonpreselected cohort of patients with primary ciliary dyskinesia. J. Med. Genet. 46, 281–286 (2009).

    CAS  PubMed  Google Scholar 

  235. Lucas, J. S. et al. Clinical care of children with primary ciliary dyskinesia. Expert Rev. Respir. Med. 11, 779–790 (2017).

    CAS  PubMed  Google Scholar 

  236. Fokkens, W. J. et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 50, 1–12 (2012).

    PubMed  Google Scholar 

  237. Mygind, N. & Lund, V. Intranasal corticosteroids for nasal polyposis: biological rationale, efficacy, and safety. Treat. Respir. Med. 5, 93–102 (2006).

    CAS  PubMed  Google Scholar 

  238. Alanin, M. C. et al. Sinus surgery can improve quality of life, lung infections, and lung function in patients with primary ciliary dyskinesia. Int. Forum Allergy Rhinol. 7, 240–247 (2017).

    PubMed  Google Scholar 

  239. Strippoli, M.-P. F. et al. Management of primary ciliary dyskinesia in European children: recommendations and clinical practice. Eur. Respir. J. 39, 1482–1491 (2012).

    PubMed  Google Scholar 

  240. Alanin, M. C. et al. Simultaneous sinus and lung infections in patients with primary ciliary dyskinesia. Acta Otolaryngol. 135, 58–63 (2015).

    CAS  PubMed  Google Scholar 

  241. Arndal, E. et al. Primary ciliary dyskinesia patients have the same P. aeruginosa clone in sinuses and lungs. Eur. Respir. J. https://doi.org/10.1183/13993003.01472-2019 (2019).

    Article  Google Scholar 

  242. Schofield, L. M., Duff, A. & Brennan, C. Airway clearance techniques for primary ciliary dyskinesia; is the cystic fibrosis literature portable? Paediatr. Respir. Rev. https://doi.org/10.1016/j.prrv.2017.03.011 (2017).

    Article  PubMed  Google Scholar 

  243. McIlwaine, M., Button, B. & Dwan, K. Positive expiratory pressure physiotherapy for airway clearance in people with cystic fibrosis. Cochrane Database Syst. Rev. 17, CD003147 (2015).

    Google Scholar 

  244. Phillips, G. E., Thomas, S., Heather, S. & Bush, A. Airway response of children with primary ciliary dyskinesia to exercise and beta2-agonist challenge. Eur. Respir. J. 11, 1389–1391 (1998).

    CAS  PubMed  Google Scholar 

  245. Paff, T. et al. A randomised controlled trial on the effect of inhaled hypertonic saline on quality of life in primary ciliary dyskinesia. Eur. Respir. J. 49, 1601770 (2017).

    PubMed  Google Scholar 

  246. Kuehni, C. E., Goutaki, M. & Kobbernagel, H. E. Hypertonic saline in patients with primary ciliary dyskinesia: on the road to evidence-based treatment for a rare lung disease. Eur. Respir. J. 49, 1602514 (2017).

    PubMed  Google Scholar 

  247. Dell, S. D. et al. Primary ciliary dyskinesia: first health-related quality-of-life measures for pediatric patients. Ann. Am. Thorac. Soc. 13, 1726–1735 (2016).

    PubMed  PubMed Central  Google Scholar 

  248. Behan, L. et al. Validation of a health-related quality of life instrument for primary ciliary dyskinesia (QOL-PCD). Thorax https://doi.org/10.1136/thoraxjnl-2016-209356 (2017). Report of the first validated health-related quality of life instrument for primary ciliary dyskinesia.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Lucas, J. S. et al. A quality-of-life measure for adults with primary ciliary dyskinesia: QOL-PCD. Eur. Respir. J. 46, 375–383 (2015).

    PubMed  PubMed Central  Google Scholar 

  250. De Boeck, K. et al. Inhaled dry powder mannitol in children with cystic fibrosis: a randomised efficacy and safety trial. J. Cyst. Fibros. 16, 380–387 (2017).

    PubMed  Google Scholar 

  251. El-Abiad, N. M., Clifton, S. & Nasr, S. Z. Long-term use of nebulized human recombinant DNase1 in two siblings with primary ciliary dyskinesia. Respir. Med. 101, 2224–2226 (2007).

    PubMed  Google Scholar 

  252. ten Berge, M., Brinkhorst, G., Kroon, A. A. & de Jongste, J. C. DNase treatment in primary ciliary dyskinesia–assessment by nocturnal pulse oximetry. Pediatr. Pulmonol. 27, 59–61 (1999).

    PubMed  Google Scholar 

  253. Desai, M., Weller, P. H. & Spencer, D. A. Clinical benefit from nebulized human recombinant DNase in Kartagener’s syndrome. Pediatr. Pulmonol. 20, 307–308 (1995).

    CAS  PubMed  Google Scholar 

  254. Fuchs, H. J. et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N. Engl. J. Med. 331, 637–642 (1994).

    CAS  PubMed  Google Scholar 

  255. Wilkinson, M. et al. Mucolytics for bronchiectasis. Cochrane Database Syst. Rev. 2014, CD001289 (2014).

    PubMed Central  Google Scholar 

  256. O’Donnell, A. E., Barker, A. F., Ilowite, J. S. & Fick, R. B. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group. Chest 113, 1329–1334 (1998).

    PubMed  Google Scholar 

  257. Stafanger, G., Garne, S., Howitz, P., Morkassel, E. & Koch, C. The clinical effect and the effect on the ciliary motility of oral N-acetylcysteine in patients with cystic fibrosis and primary ciliary dyskinesia. Eur. Respir. J. 1, 161–167 (1988).

    CAS  PubMed  Google Scholar 

  258. Koh, Y. Y. et al. The effect of regular salbutamol on lung function and bronchial responsiveness in patients with primary ciliary dyskinesia. Chest 117, 427–433 (2000).

    CAS  PubMed  Google Scholar 

  259. Hellinckx, J., Demedts, M. & De Boeck, K. Primary ciliary dyskinesia: evolution of pulmonary function. Eur. J. Pediatr. 157, 422–426 (1998).

    CAS  PubMed  Google Scholar 

  260. Alanin, M. C. et al. A longitudinal study of lung bacterial pathogens in patients with primary ciliary dyskinesia. Clin. Microbiol. Infect. 21, 1093.e1–7 (2015).

    CAS  Google Scholar 

  261. Sommer, L. M. et al. Bacterial evolution in PCD and CF patients follows the same mutational steps. Sci. Rep. 6, 28732 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Barbato, A. et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur. Respir. J. 34, 1264–1276 (2009).

    CAS  PubMed  Google Scholar 

  263. Werner, C., Onnebrink, J. G. & Omran, H. Diagnosis and management of primary ciliary dyskinesia. Cilia 4, 2 (2015).

    PubMed  PubMed Central  Google Scholar 

  264. Chalmers, J. D. et al. Cross-infection risk in patients with bronchiectasis: a position statement from the European Bronchiectasis Network (EMBARC), EMBARC/ELF patient advisory group and European Reference Network (ERN-Lung) Bronchiectasis Network. Eur. Respir. J. https://doi.org/10.1183/13993003.01937-2017 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Saiman, L. et al. Infection prevention and control guideline for cystic fibrosis: 2013 update. Infect. Control. Hosp. Epidemiol. 35, S1–S67 (2014).

    PubMed  Google Scholar 

  266. Saiman, L. et al. Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa randomized controlled trial. JAMA 303, 1707 (2010).

    CAS  PubMed  Google Scholar 

  267. Southern, K. W., Barker, P. M., Solis-Moya, A. & Patel, L. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst. Rev. 11, CD002203 (2012).

    PubMed  Google Scholar 

  268. Wong, C. et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet 380, 660–667 (2012).

    CAS  PubMed  Google Scholar 

  269. Altenburg, J. et al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA 309, 1251–1259 (2013).

    CAS  PubMed  Google Scholar 

  270. Ratjen, F. et al. Changes in airway inflammation during pulmonary exacerbations in patients with cystic fibrosis and primary ciliary dyskinesia. Eur. Respir. J. 47, 829–836 (2016).

    CAS  PubMed  Google Scholar 

  271. Suissa, S., McGhan, R., Niewoehner, D. & Make, B. Inhaled corticosteroids in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 4, 535–542 (2007).

    CAS  PubMed  Google Scholar 

  272. Lee, C. H. et al. Use of inhaled corticosteroids and the risk of tuberculosis. Thorax 68, 1105–1113 (2013).

    PubMed  Google Scholar 

  273. Calverley, P. M. A. et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N. Engl. J. Med. 356, 775–789 (2007).

    CAS  PubMed  Google Scholar 

  274. Nannini, L. J., Poole, P., Milan, S. J., Holmes, R. & Normansell, R. Combined corticosteroid and long-acting beta2-agonist in one inhaler versus placebo for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD003794.pub4 (2013).

  275. Liu, V. X. et al. Association between inhaled corticosteroid use and pulmonary nontuberculous mycobacterial infection. Ann. Am. Thorac. Soc. 15, 1169–1176 (2018).

    PubMed  PubMed Central  Google Scholar 

  276. Balfour-Lynn, I. M. et al. Multicenter randomized controlled trial of withdrawal of inhaled corticosteroids in cystic fibrosis. Am. J. Respir. Crit. Care Med. 173, 1356–1362 (2006).

    CAS  PubMed  Google Scholar 

  277. Griese, M. & Scheuch, G. Delivery of alpha-1 antitrypsin to airways. Ann. Am. Thorac. Soc. 13, S346–S351 (2016).

    PubMed  Google Scholar 

  278. Garantziotis, S., Brezina, M., Castelnuovo, P. & Drago, L. The role of hyaluronan in the pathobiology and treatment of respiratory disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 310, L785–L795 (2016).

    PubMed  PubMed Central  Google Scholar 

  279. Smit, H. J., Schreurs, A. J., Van den Bosch, J. M. & Westermann, C. J. Is resection of bronchiectasis beneficial in patients with primary ciliary dyskinesia? Chest 109, 1541–1544 (1996).

    CAS  PubMed  Google Scholar 

  280. Yiallouros, P. K. et al. Clinical features of primary ciliary dyskinesia in Cyprus with emphasis on lobectomized patients. Respir. Med. 109, 347–356 (2015).

    PubMed  Google Scholar 

  281. Kouis, P. et al. Prevalence and course of disease after lung resection in primary ciliary dyskinesia: a cohort and nested case–control study. Respir. Res. 20, 212 (2019).

    PubMed  PubMed Central  Google Scholar 

  282. Graeter, T., Schäfers, H. J., Wahlers, T. & Borst, H. G. Lung transplantation in Kartagener’s syndrome. J. Heart Lung Transplant. 13, 724–726.

  283. Yazicioglu, A., Alici, I. O., Karaoglanoglu, N. & Yekeler, E. Pitfalls and challenges of lung transplant in a patient with Kartagener syndrome and scoliosis. Exp. Clin. Transplant. https://doi.org/10.6002/ect.2015.0190 (2016).

    Article  PubMed  Google Scholar 

  284. Hayes, D., Reynolds, S. D. & Tumin, D. Outcomes of lung transplantation for primary ciliary dyskinesia and Kartagener syndrome. J. Heart Lung Transpl. 35, 1377–1378 (2016).

    Google Scholar 

  285. Campbell, R. G., Birman, C. S. & Morgan, L. Management of otitis media with effusion in children with primary ciliary dyskinesia: a literature review. Int. J. Pediatr. Otorhinolaryngol. 73, 1630–1638 (2009).

    CAS  PubMed  Google Scholar 

  286. Wolter, N. E., Dell, S. D., James, A. L. & Campisi, P. Middle ear ventilation in children with primary ciliary dyskinesia. Int. J. Pediatr. Otorhinolaryngol. 76, 1565–1568 (2012).

    PubMed  Google Scholar 

  287. Dammeyer, J., Lehane, C. & Marschark, M. Use of technological aids and interpretation services among children and adults with hearing loss. Int. J. Audiol. https://doi.org/10.1080/14992027.2017.1325970 (2017).

    Article  PubMed  Google Scholar 

  288. Perera, R., Glasziou, P. P., Heneghan, C. J., McLellan, J. & Williamson, I. Autoinflation for hearing loss associated with otitis media with effusion. Cochrane Database Syst. Rev. 5, CD006285 (2013).

    Google Scholar 

  289. Williamson, I. et al. Effect of nasal balloon autoinflation in children with otitis media with effusion in primary care: an open randomized controlled trial. CMAJ 187, 961–969 (2015).

    PubMed  PubMed Central  Google Scholar 

  290. Bidarian-Moniri, A., Ramos, M.-J. & Ejnell, H. Autoinflation for treatment of persistent otitis media with effusion in children: a cross-over study with a 12-month follow-up. Int. J. Pediatr. Otorhinolaryngol. 78, 1298–1305 (2014).

    PubMed  Google Scholar 

  291. Sha, Y.-W., Ding, L. & Li, P. Management of primary ciliary dyskinesia/Kartagener’s syndrome in infertile male patients and current progress in defining the underlying genetic mechanism. Asian J. Androl. 16, 101–106 (2014).

    PubMed  Google Scholar 

  292. Moshé, S. L., Perucca, E., Ryvlin, P. & Tomson, T. Epilepsy: new advances. Lancet 385, 884–898 (2015).

    PubMed  Google Scholar 

  293. World Health Organization Quality of Life Assessment. The World Health Organization Quality of Life Assessment (WHOQOL): development and general psychometric properties. Soc. Sci. Med. 46, 1569–1585 (1998).

    Google Scholar 

  294. Schofield, L. M. & Horobin, H. E. Growing up with primary ciliary dyskinesia in Bradford, UK: exploring patients experiences as a physiotherapist. Physiother. Theory Pract. 30, 157–164 (2014).

    PubMed  Google Scholar 

  295. Behan, L., Rubbo, B., Lucas, J. S. & Dunn Galvin, A. The patient’s experience of primary ciliary dyskinesia: a systematic review. Qual. Life Res. https://doi.org/10.1007/s11136-017-1564-y (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Pifferi, M. et al. Health-related quality of life and unmet needs in patients with primary ciliary dyskinesia. Eur. Respir. J. 35, 787–794 (2010).

    CAS  PubMed  Google Scholar 

  297. McManus, I. C., Mitchison, H. M., Chung, E. M. K., Stubbings, G. F. & Martin, N. Primary ciliary dyskinesia (Siewert’s/Kartagener’s syndrome): respiratory symptoms and psycho-social impact. BMC Pulm. Med. 3, 4 (2003).

    PubMed  PubMed Central  Google Scholar 

  298. Carotenuto, M., Esposito, M., Di Pasquale, F., De Stefano, S. & Santamaria, F. Psychological, cognitive and maternal stress assessment in children with primary ciliary dyskinesia. World J. Pediatr. 9, 312–317 (2013).

    PubMed  Google Scholar 

  299. McManus, I. C., Stubbings, G. F. & Martin, N. Stigmatization, physical illness and mental health in primary ciliary dyskinesia. J. Health Psychol. 11, 467–482 (2006).

    CAS  PubMed  Google Scholar 

  300. Aymé, S., Bellet, B. & Rath, A. Rare diseases in ICD11: making rare diseases visible in health information systems through appropriate coding. Orphanet J. Rare Dis. 10, 35 (2015).

    PubMed  PubMed Central  Google Scholar 

  301. Werner, C. et al. An international registry for primary ciliary dyskinesia. Eur. Respir. J. 47, 849–859 (2015).

    PubMed  Google Scholar 

  302. Bush, A. et al. Mucus properties in children with primary ciliary dyskinesia: comparison with cystic fibrosis. Chest 129, 118–123 (2006).

    PubMed  Google Scholar 

  303. Sunther, M., Bush, A., Hogg, C., McCann, L. & Carr, S. B. Recovery of baseline lung function after pulmonary exacerbation in children with primary ciliary dyskinesia. Pediatr. Pulmonol. 51, 1362–1366 (2016).

    PubMed  Google Scholar 

  304. U.S.National Library of Medicine ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01939899 (2019).

  305. Joensen, O. et al. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections. PLoS ONE 9, e115584 (2014).

    PubMed  PubMed Central  Google Scholar 

  306. Zihlif, N., Paraskakis, E., Tripoli, C., Lex, C. & Bush, A. Makers of airway inflammation in primary ciliary dyskinesia studied using exhaled breath condensate. Pediatr. Pulmonol. 41, 509–514 (2006).

    PubMed  Google Scholar 

  307. Montuschi, P. et al. Nuclear magnetic resonance-based metabolomics discriminates primary ciliary dyskinesia from cystic fibrosis. Am. J. Respiratory Crit. Care Med. 190, 229–233 (2014).

    Google Scholar 

  308. Hoang-Thi, T. N. et al. Automated computed tomographic scoring of lung disease in adults with primary ciliary dyskinesia. BMC Pulm. Med. 18, 194 (2018).

    PubMed  PubMed Central  Google Scholar 

  309. Ostrowski, L. E. et al. Restoring ciliary function to differentiated primary ciliary dyskinesia cells with a lentiviral vector. Gene Ther. 21, 253–261 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Silva, E. et al. Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of left–right asymmetry. Mol. Biol. Cell 27, 48–63 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (SNF grant no. 320030_173044 and grant no. 320030B_192804 to C.E.K.) contributing to the work relating to epidemiology of PCD. The National Institutes of Health (NIH/NHLBI grant R01HL071798 to M.A.Z. and NIH/ORDR/NCATS/NHLBI grant U54HL096458 to M.W.L. and M.A.Z.) contributed to the work relating to diagnosis, screening and prevention. The Genetic Disorders of Mucociliary Clearance Consortium (GDMCC; U54HL096458) is part of the NCATS RDCRN and is supported by the RDCRN Data Management and Coordinating Center (DMCC; U2CTR002818). RDCRN is an initiative of the Office of Rare Diseases Research (ORDR) funded through a collaboration between NCATS and the NHLBI. PCD clinical and research activities in Southampton, UK, are funded or supported by NHS England, NIHR RfPB (200470), NIHR Southampton Clinical Research Facility, AAIR Charity, Wessex Medical Research, BEAT-PCD European Respiratory Society, BEAT-PCD COST Action (BM1407) and the Clinical Research Collaboration European Reference Network for Rare Respiratory Diseases (ERN-LUNG; project ID no. 739546), contributing to the work on quality of life. The Children Lung Foundation (Denmark) contributed to the work relating to disease management. H.O. received funding from the Deutsche Forschungsgemeinschaft (DFG; Om6/7, Om6/8, OM6/10, OM6/14, and DFG clinical research unit 326 subprojekt OM6/11), the Interdisziplinaeres Zentrum für Klinische Forschung (IZKF) Muenster (Om2/015/16, OM2/10/20), and the European Commission (LYSOCIL, Horizon2020 GA ID 811087 and Registry Warehouse, Horizon2020 GA ID 777295). J.W. received funding from the DFG (WA 4283/1-1), “Innovative Medical Research” of the University of Muenster Medical School (WA 1 2 14 18) and “Dekanat der Medizinischen Fakultät der WWU”. J.W., K.G.N., J.S.L., C.E.K. and H.O. are members of the European Reference Network of Rare Respiratory Disease (ERN-LUNG).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (H.O. and J.W.); Epidemiology (C.E.K.); Mechanisms/pathophysiology (H.O. and J.W.); Diagnosis, screening and prevention (H.O., J.W., M.W.L., C.E.K. J.S.L and M.A.Z.); Management (K.G.N.); Quality of life (J.S.L.); Outlook (H.O. and J.W.); Overview of Primer (H.O.).

Corresponding author

Correspondence to Heymut Omran.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks A. Bush, R. Hirst, F. Santamaria, A. Shoemark and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ERN-Lung: https://ern-lung.eu/

European Reference Networks (ERNs): http://ec.europa.eu/health/ern/policy_en

NHLBI primary ciliary dyskinesia: https://www.nhlbi.nih.gov/health-topics/primary-ciliary-dyskinesia

RDCRN primary ciliary dyskinesia: https://rarediseases.info.nih.gov/diseases/4484/primary-ciliary-dyskinesia

US CDC meningococcal vaccine recommendations: https://www.cdc.gov/vaccines/vpd/mening/hcp/recommendations.html

US CDC pneumococcal vaccination: https://www.cdc.gov/pneumococcal/vaccination.html

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallmeier, J., Nielsen, K.G., Kuehni, C.E. et al. Motile ciliopathies. Nat Rev Dis Primers 6, 77 (2020). https://doi.org/10.1038/s41572-020-0209-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-020-0209-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing