Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

MicroED for the study of protein–ligand interactions and the potential for drug discovery

Abstract

Microcrystal electron diffraction (MicroED) is an electron cryo-microscopy (cryo-EM) technique used to determine molecular structures with crystals that are a millionth the size needed for traditional single-crystal X-ray crystallography. An exciting use of MicroED is in drug discovery and development, where it can be applied to the study of proteins and small molecule interactions, and for structure determination of natural products. The structures are then used for rational drug design and optimization. In this Perspective, we discuss the current applications of MicroED for structure determination of protein–ligand complexes and potential future applications in drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microcrystal electron diffraction structure of catalase with a bound haem and NADPH.
Fig. 2: I3C sites in proteinase K.
Fig. 3: Microcrystal electron diffraction facilitates the modelling of inhibitors within the protein structure.
Fig. 4: Membrane protein structures determined by MicroED.

Similar content being viewed by others

References

  1. Maveyraud, L. & Mourey, L. Protein X-ray crystallography and drug discovery. Molecules 25, 1030 (2020).

    CAS  PubMed Central  Google Scholar 

  2. Blundell, T. L. Protein crystallography and drug discovery: recollections of knowledge exchange between academia and industry. IUCrJ 4, 308–321 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. McNae, I. W. et al. Studying protein–ligand interactions using protein crystallography. Crystallogr. Rev. 11, 61–71 (2005).

    CAS  Google Scholar 

  4. Martin-Garcia, J. M. et al. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation. IUCrJ 4, 439–454 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zatsepin, N. A., Li, C., Colasurd, P. & Nannenga, B. L. The complementarity of serial femtosecond crystallography and MicroED for structure determination from microcrystals. Curr. Opin. Struct. Biol. 58, 286–293 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Spence, J. C. H. XFELs for structure and dynamics in biology. IUCrJ 4, 322–339 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi, D., Nannenga, B. L., Iadanza, M. G. & Gonen, T. Three-dimensional electron crystallography of protein microcrystals. eLife 2, e01345 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Nannenga, B. L. & Gonen, T. The cryo-EM method microcrystal electron diffraction (MicroED). Nat. Methods 16, 369–379 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Egerton, R. F. Outrun radiation damage with electrons? Adv. Struct. Chem. Imaging 1, 5 (2015).

    Google Scholar 

  10. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    CAS  PubMed  Google Scholar 

  11. Nannenga, B. L. & Gonen, T. MicroED opens a new era for biological structure determination. Curr. Opin. Struct. Biol. 40, 128–135 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones, C. G. et al. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gemmi, M. et al. 3D electron diffraction: the nanocrystallography revolution. ACS Cent. Sci. 5, 1315–1329 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gemmi, M., La Placa, M. G. I., Galanis, A. S., Rauch, E. F. & Nicolopoulos, S. Fast electron diffraction tomography. J. Appl. Crystallogr. 48, 718–727 (2015).

    CAS  Google Scholar 

  15. Kolb, U., Mugnaioli, E. & Gorelik, T. E. Automated electron diffraction tomography–a new tool for nano crystal structure analysis. Cryst. Res. Technol. 46, 542–554 (2011).

    CAS  Google Scholar 

  16. Zhang, D. L., Oleynikov, P., Hovmoller, S. & Zou, X. D. Collecting 3D electron diffraction data by the rotation method. Z. Kristallogr. 225, 94–102 (2010).

    CAS  Google Scholar 

  17. Boullay, P., Palatinus, L. & Barrier, N. Precession electron diffraction tomography for solving complex modulated structures: the case of Bi5Nb3O15. Inorg. Chem. 52, 6127–6135 (2013).

    CAS  PubMed  Google Scholar 

  18. Jiang, J. X. et al. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 333, 1131–1134 (2011).

    CAS  PubMed  Google Scholar 

  19. Mugnaioli, E., Gorelik, T. & Kolb, U. “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109, 758–765 (2009).

    CAS  PubMed  Google Scholar 

  20. Zhang, Y. B. et al. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 135, 16336–16339 (2013).

    CAS  PubMed  Google Scholar 

  21. Broadhurst, E. T. et al. Polymorph evolution during crystal growth studied by 3D electron diffraction. IUCrJ 7, 5–9 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Feyand, M. et al. Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal-organic framework. Angew. Chem. Int. Ed. 51, 10373–10376 (2012).

    CAS  Google Scholar 

  23. Nannenga, B. L., Shi, D., Hattne, J., Reyes, F. E. & Gonen, T. Structure of catalase determined by MicroED. eLife 3, e03600 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Nannenga, B. L., Shi, D., Leslie, A. G. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. de la Cruz, M. J. et al. Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat. Methods 14, 399–402 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Xu, H. et al. Solving a new R2lox protein structure by microcrystal electron diffraction. Sci. Adv. 5, eaax4621 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Purdy, M. D. et al. MicroED structures of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat. Proc. Natl Acad. Sci. USA 115, 13258–13263 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Martynowycz, M. W., Khan, F., Hattne, J., Abramson, J. & Gonen, T. MicroED structure of lipid-embedded mammalian mitochondrial voltage-dependent anion channel. Proc. Natl Acad. Sci. USA 117, 32380–32385 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, S. & Gonen, T. MicroED structure of the NaK ion channel reveals a Na+ partition process into the selectivity filter. Commun. Biol. 1, 38 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Martynowycz, M. W. et al. MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP. Proc. Natl Acad. Sci. USA 118, e2106041118 (2021).

    CAS  PubMed  Google Scholar 

  31. Yonekura, K., Kato, K., Ogasawara, M., Tomita, M. & Toyoshima, C. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges. Proc. Natl Acad. Sci. USA 112, 3368–3373 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez, J. A. et al. Structure of the toxic core of α-synuclein from invisible crystals. Nature 525, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Krotee, P. et al. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity. eLife 6, 19273 (2017).

    Google Scholar 

  34. Guenther, E. L. et al. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nat. Struct. Mol. Biol. 25, 311–319 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Seidler, P. M. et al. Structure-based inhibitors of tau aggregation. Nat. Chem. 10, 170–176 (2018).

    CAS  PubMed  Google Scholar 

  36. Warmack, R. A. et al. Structure of amyloid-β (20–34) with Alzheimer’s-associated isomerization at Asp23 reveals a distinct protofilament interface. Nat. Commun. 10, 3357 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. van Genderen, E. et al. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector. Acta Crystallogr. A 72, 236–242 (2016).

    Google Scholar 

  38. Gruene, T. et al. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int. Ed. 57, 16313–16317 (2018).

    CAS  Google Scholar 

  39. Dick, M., Sarai, N. S., Martynowycz, M. W., Gonen, T. & Arnold, F. H. Tailoring tryptophan synthase TrpB for selective quaternary carbon bond formation. J. Am. Chem. Soc. 141, 19817–19822 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ting, C. P. et al. Use of a scaffold peptide in the biosynthesis of amino acid–derived natural products. Science 365, 280–284 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Levine, A. M. et al. Crystal structure and orientation of organic semiconductor thin films by microcrystal electron diffraction and grazing-incidence wide-angle X-ray scattering. Chem. Commun. 56, 4204–4207 (2020).

    CAS  Google Scholar 

  42. Brázda, P., Palatinus, L. & Babor, M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science 364, 667–669 (2019).

    PubMed  Google Scholar 

  43. Das, P. P. et al. Crystal structures of two important pharmaceuticals solved by 3D precession electron diffraction tomography. Org. Process Res. Dev. 22, 1365–1372 (2018).

    CAS  Google Scholar 

  44. Banihashemi, F. et al. Beam-sensitive metal-organic framework structure determination by microcrystal electron diffraction. Ultramicroscopy 216, 113048 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vergara, S. et al. MicroED structure of Au146(p-MBA)57 at subatomic resolution reveals a twinned FCC cluster. J. Phys. Chem. Lett. 8, 5523–5530 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Simancas, J. et al. Ultrafast electron diffraction tomography for structure determination of the new zeolite ITQ-58. J. Am. Chem. Soc. 138, 10116–10119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rozhdestvenskaya, I. V. et al. The structure of denisovite, a fibrous nanocrystalline polytypic disordered ‘very complex’ silicate, studied by a synergistic multi-disciplinary approach employing methods of electron crystallography and X-ray powder diffraction. IUCrJ 4, 223–242 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mugnaioli, E. et al. Ab initio structure determination of Cu2−xTe plasmonic nanocrystals by precession-assisted electron diffraction tomography and HAADF-STEM imaging. Inorg. Chem. 57, 10241–10248 (2018).

    CAS  PubMed  Google Scholar 

  49. Scapin, G., Potter, C. S. & Carragher, B. Cryo-EM for small molecules discovery, design, understanding, and application. Cell Chem. Biol. 25, 1318–1325 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Van Drie, J. H. & Tong, L. Cryo-EM as a powerful tool for drug discovery. Bioorg. Med. Chem. Lett. 30, 127524 (2020).

    PubMed  PubMed Central  Google Scholar 

  51. Subramaniam, S., Earl, L. A., Falconieri, V., Milne, J. L. S. & Egelman, E. H. Resolution advances in cryo-EM enable application to drug discovery. Curr. Opin. Struct. Biol. 41, 194–202 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Clabbers, M. T. B. & Xu, H. Macromolecular crystallography using microcrystal electron diffraction. Acta Crystallogr. D 77, 313–324 (2021).

    CAS  Google Scholar 

  53. Clabbers, M. T. B. & Xu, H. Microcrystal electron diffraction in macromolecular and pharmaceutical structure determination. Drug Discov. Today Technol. https://doi.org/10.1016/j.ddtec.2020.12.002 (2020).

    Article  Google Scholar 

  54. Shi, D. et al. The collection of MicroED data for macromolecular crystallography. Nat. Protoc. 11, 895–904 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nannenga, B. L. MicroED methodology and development. Struct. Dyn. 7, 014304 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bu, G. & Nannenga, B. L. in cryoEM: Methods and Protocols (eds Gonen, T. & Nannenga, B. L.) 287–297 (Springer, 2021).

  57. Hattne, J. et al. MicroED data collection and processing. Acta Crystallogr. A 71, 353–360 (2015).

    CAS  Google Scholar 

  58. Dubochet, J. & McDowall, A. Vitrification of pure water for electron microscopy. J. Microsc. 124, 3–4 (1981).

    Google Scholar 

  59. Passmore, L. A. & Russo, C. J. Specimen preparation for high-resolution cryo-EM. Methods Enzymol. 579, 51–86 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao, J. et al. A simple pressure-assisted method for MicroED specimen preparation. Nat. Commun. 12, 5036 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nannenga, B. L. & Gonen, T. MicroED: a versatile cryoEM method for structure determination. Emerg. Top. Life Sci. 2, 1–8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hattne, J., Martynowycz, M. W., Penczek, P. A. & Gonen, T. MicroED with the Falcon III direct electron detector. IUCrJ 6, 921–926 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Clabbers, M. T. B., Fisher, S. Z., Coinçon, M., Zou, X. & Xu, H. Visualizing drug binding interactions using microcrystal electron diffraction. Commun. Biol. 3, 417 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu, H. et al. A rare lysozyme crystal form solved using highly redundant multiple electron diffraction datasets from micron-sized crystals. Structure 26, 667–675 (2018).

    CAS  PubMed  Google Scholar 

  65. Nederlof, I., van Genderen, E., Li, Y. W. & Abrahams, J. P. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals. Acta Crystallogr. D 69, 1223–1230 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. de la Cruz, M. J., Martynowycz, M. W., Hattne, J. & Gonen, T. MicroED data collection with SerialEM. Ultramicroscopy 201, 77–80 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. de la Cruz, M. J. in cryoEM: Methods and Protocols (eds Gonen, T. & Nannenga, B. L.) 321–327 (Springer, 2021).

  68. Hattne, J. et al. Analysis of global and site-specific radiation damage in cryo-EM. Structure 26, 759–766 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hattne, J. Low-dose data collection and radiation damage in MicroED. Methods Mol. Biol. 2215, 309–319 (2021).

    CAS  PubMed  Google Scholar 

  70. Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Leslie, A. G. W. & Powell, H. R. in Processing diffraction data with MOSFLM (eds Read, R. J. & Sussman, J. L.) 41–51 (Springer, 2007).

  72. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Clabbers, M. T. B., Gruene, T., Parkhurst, J. M., Abrahams, J. P. & Waterman, D. G. Electron diffraction data processing with DIALS. Acta Crystallogr. D 74, 506–518 (2018).

    CAS  Google Scholar 

  74. Martynowycz, M. W. & Gonen, T. Ligand incorporation into protein microcrystals for MicroED by on-grid soaking. Structure 29, 88–95 (2021).

    CAS  PubMed  Google Scholar 

  75. Sippel, K. H. et al. High-resolution structure of human carbonic anhydrase II complexed with acetazolamide reveals insights into inhibitor drug design. Acta Crystallogr. F 65, 992–995 (2009).

    CAS  Google Scholar 

  76. Martynowycz, M. W., Zhao, W., Hattne, J., Jensen, G. J. & Gonen, T. Collection of continuous rotation MicroED data from ion beam-milled crystals of any size. Structure 27, 545–548 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Duyvesteyn, H. M. E. et al. Machining protein microcrystals for structure determination by electron diffraction. Proc. Natl Acad. Sci. USA 115, 9569–9573 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, X., Zhang, S., Zhang, J. & Sun, F. In situ protein micro-crystal fabrication by cryo-FIB for electron diffraction. Biophys. Rep. 4, 339–347 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Polovinkin, V. et al. Demonstration of electron diffraction from membrane protein crystals grown in a lipidic mesophase after lamella preparation by focused ion beam milling at cryogenic temperatures. J. Appl. Crystallogr. 53, 1416–1424 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhu, L. et al. Structure determination from lipidic cubic phase embedded microcrystals by MicroED. Structure 28, 1149–1159 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bücker, R. et al. Serial protein crystallography in an electron microscope. Nat. Commun. 11, 996 (2020).

    PubMed  PubMed Central  Google Scholar 

  82. Wang, B., Zou, X. & Smeets, S. Automated serial rotation electron diffraction combined with cluster analysis: an efficient multi-crystal workflow for structure determination. IUCrJ 6, 854–867 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yonekura, K. et al. Ionic scattering factors of atoms that compose biological molecules. IUCrJ 5, 348–353 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yonekura, K. & Maki-Yonekura, S. Refinement of cryo-EM structures using scattering factors of charged atoms. J. Appl. Crystallogr. 49, 1517–1523 (2016).

    CAS  Google Scholar 

  85. Blum, T. B. et al. Statistically correcting dynamical electron scattering improves the refinement of protein nanocrystals, including charge refinement of coordinated metals. Acta Crystallogr. D 77, 75–85 (2021).

    CAS  Google Scholar 

  86. Wu, J. S. & Spence, J. C. Structure and bonding in α-copper phthalocyanine by electron diffraction. Acta Crystallogr. A 59, 495–505 (2003).

    CAS  PubMed  Google Scholar 

  87. Zuo, J. M., Kim, M., O’Keeffe, M. & Spence, J. C. H. Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O. Nature 401, 49–52 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

The Nannenga laboratory is supported by the National Institutes of Health R01GM124152 and R21GM135784 and the National Science Foundation DMR-1942084. The Gonen laboratory is supported by the National Institutes of Health P41GM136508 and by funds from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Brent L. Nannenga or Tamir Gonen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks Xiaodong Zou (who co-reviewed with Gerhard Hofer), Hongyi Xu and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Lipidic cubic phase

(LCP). A lipid matrix that mimics a membrane and can stabilize and facilitate crystallization of membrane proteins.

Positive density

In a difference map, shows that there is signal in the data that is not being modelled and indicates where to add new atoms and molecules to the structural model.

Vitrification

The process of freezing water so quickly that it does not crystallize but becomes an amorphous solid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, L.J., Bu, G., Nannenga, B.L. et al. MicroED for the study of protein–ligand interactions and the potential for drug discovery. Nat Rev Chem 5, 853–858 (2021). https://doi.org/10.1038/s41570-021-00332-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00332-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing