Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploiting metabolic glycoengineering to advance healthcare

Abstract

Metabolic glycoengineering (MGE) is a technique for manipulating cellular metabolism to modulate glycosylation. MGE is used to increase the levels of natural glycans and, more importantly, to install non-natural monosaccharides into glycoconjugates. In this Review, we summarize the chemistry underlying MGE that has been developed over the past three decades and highlight several recent advances that have set the stage for clinical translation. In anticipation of near-term application to human healthcare, we describe emerging efforts to deploy MGE in diverse applications, ranging from the glycoengineering of biotherapeutic proteins and the diagnosis and treatment of complex diseases such as cancer to the development of new immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of MGE.
Fig. 2: The development of MGE.
Fig. 3: MGE-enabled design of antibody–drug conjugates.
Fig. 4: Potential ex-vivo-based clinical applications of MGE.
Fig. 5: Diagnostic applications of MGE.
Fig. 6: MGE-based cancer immunotherapy.

Similar content being viewed by others

References

  1. Warburg, O. A. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  2. Wick, A. N., Drury, D. R., Nakada, H. I. & Wolfe, J. B. Localization of the primary metabolic block produced by 2-deoxyglucose. J. Biol. Chem. 224, 963–969 (1957).

    CAS  PubMed  Google Scholar 

  3. Dove, A. The bittersweet promise of glycobiology. Nat. Biotechnol. 19, 913–917 (2001).

    CAS  PubMed  Google Scholar 

  4. Fuster, M. M. & Esko, J. D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat. Rev. Cancer 5, 526–542 (2005).

    CAS  PubMed  Google Scholar 

  5. Du, J. et al. Metabolic glycoengineering: sialic acid and beyond. Glycobiol. 19, 1382–1401 (2009).

    CAS  Google Scholar 

  6. Keppler, O. T., Horstkorte, R., Pawlita, M., Schmidt, C. & Reutter, W. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiol. 11, 11R–18R (2001).

    CAS  Google Scholar 

  7. Dube, D. H. & Bertozzi, C. R. Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7, 616–625 (2003).

    CAS  PubMed  Google Scholar 

  8. Aich, U. & Yarema, K. J. in Glycoscience Ch 10.3 (eds Fraser-Reid, B. O., Tatsuta, K. & Thiem, J.) 2133-2190 (Springer, 2008).

  9. Wratil, P. R., Horstkorte, R. & Reutter, W. Metabolic glycoengineering with N-acyl side chain modified mannosamines. Angew. Chem. Int. Ed. 55, 9482–9512 (2016).

    CAS  Google Scholar 

  10. Gross, H. J. & Brossmer, R. Enzymatic introduction of a fluorescent sialic acid into oligosaccharide chains of glycoproteins. Eur. J. Biochem. 177, 583–589 (1988).

    CAS  PubMed  Google Scholar 

  11. Gross, H. J. et al. Transfer of synthetic sialic acid analogues to N- and O-linked glycoprotein glycans using four different mammalian sialyltransferases. Biochem. 28, 7386–7392 (1989).

    CAS  Google Scholar 

  12. Herrler, G. et al. Use of a sialic acid analogue to analyze the importance of the receptor-destroying enzyme for the interaction of influenza C virus with cells. Acta Histochem. Suppl. 40, 39–41 (1990).

    CAS  PubMed  Google Scholar 

  13. Brossmer, R. & Gross, H. J. Fluorescent and photoactivatable sialic acids. Methods Enzymol. 247, 177–193 (1994).

    CAS  PubMed  Google Scholar 

  14. Hong, S. et al. Bacterial glycosyltransferase-mediated cell-surface chemoenzymatic glycan modification. Nat. Commun. 10, 1799 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. Cai, L. et al. A chemoenzymatic route to N-acetylglucosamine-1-phosphate analogues: substrate specificity investigations of N-acetylhexosamine 1-kinase. Chem. Commun. 28, 2944–2946 (2009).

    Google Scholar 

  16. Guan, W., Cai, L., Fang, J., Wu, B. & Wang, P. G. Enzymatic synthesis of UDP-GlcNAc/UDP-GalNAc analogs using N-acetylglucosamine 1-phosphate uridyltransferase (GlmU). Chem. Commun. 7, 6976–6978 (2009).

    Google Scholar 

  17. Guan, W., Cai, L. & Wang, P. G. Highly efficient synthesis of UDP-GalNAc/GlcNAc analogues with promiscuous recombinant human UDP-GalNAc pyrophosphorylase AGX1. Chem. Eur. J. 16, 13343–13345 (2010).

    CAS  PubMed  Google Scholar 

  18. Briard, J. G., Jiang, H., Moremen, K. W., Macauley, M. S. & Wu, P. Cell-based glycan arrays for probing glycan–glycan binding protein interactions. Nat. Commun. 9, 880 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Jiang, H. et al. Modulating cell-surface receptor signaling and ion channel functions by in situ glycan editing. Angew. Chem. Int. Ed. 57, 967–971 (2018).

    CAS  Google Scholar 

  20. Khidekel, N. et al. A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J. Am. Chem. Soc. 125, 16162–16163 (2003).

    CAS  PubMed  Google Scholar 

  21. Lopez-Aguilar, A., Hou, X., Wen, L., Wang, P. G. & Wu, P. A chemoenzymatic histology method for O-GlcNAc detection. ChemBioChem 18, 2416–2421 (2017).

    Google Scholar 

  22. Kayser, H. et al. Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-d-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992).

    CAS  PubMed  Google Scholar 

  23. Viswanathan, K. et al. Engineering sialic acid synthetic ability into insect cells: identifying metabolic bottlenecks and devising strategies to overcome them. Biochem. 42, 15215–15225 (2003).

    CAS  Google Scholar 

  24. Keppler, O. T. et al. Biosynthetic modulation of sialic acid-dependent virus-receptor interactions of two primate polyoma viruses. J. Biol. Chem. 270, 1308–1314 (1995).

    CAS  PubMed  Google Scholar 

  25. Keppler, O. T. et al. Elongation of the N-acyl side chain of sialic acids in MDCK II cells inhibits influenza A virus infection. Biochem. Biophys. Res. Commun. 253, 437–442 (1998).

    CAS  PubMed  Google Scholar 

  26. Das, K., Aramini, J. M., Ma, L. C., Krug, R. M. & Arnold, E. Structures of influenza A proteins and insights into antiviral drug targets. Nat. Struct. Mol. Biol. 17, 530–538 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmidt, C., Stehling, P., Schnitzer, J., Reutter, W. & Horstkorte, R. Biochemical engineering of neural cell surfaces by the synthetic N-propanoyl-substituted neuraminic acid precursor. J. Biol. Chem. 273, 19146–19152 (1998).

    CAS  PubMed  Google Scholar 

  28. Büttner, B. et al. Biochemical engineering of cell surface sialic acids stimulates axonal growth. J. Neurosci. 22, 8869–8875 (2002).

    PubMed  PubMed Central  Google Scholar 

  29. Horstkorte, R., Rau, K., Laabs, S., Danker, K. & Reutter, W. Biochemical engineering of the N-acyl side chain of sialic acid leads to increased calcium influx from intracellular compartments and promotes differentiation of HL60 cells. FEBS Lett. 571, 99–102 (2004).

    CAS  PubMed  Google Scholar 

  30. Collins, B. E., Fralich, T. J., Itonori, S., Ichikawa, Y. & Schnaar, R. L. Conversion of cellular sialic acid expression from N-acetyl- to N-glycolylneuraminic acid using a synthetic precursor, N-glycolylmannosamine pentaacetate: inhibition of myelin-associated glycoprotein binding to neural cells. Glycobiol. 10, 11–20 (2000).

    CAS  Google Scholar 

  31. Mahal, L. K., Yarema, K. J. & Bertozzi, C. R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    CAS  PubMed  Google Scholar 

  32. Lemieux, G. A., Yarema, K. J., Jacobs, C. L. & Bertozzi, C. R. Exploiting differences in sialoside expression for selective targeting of MRI contrast reagents. J. Am. Chem. Soc. 121, 4278–4279 (1999).

    CAS  Google Scholar 

  33. Saxon, E. & Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    CAS  PubMed  Google Scholar 

  34. Hsu, T.-L. et al. Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc. Natl. Acad. Sci. USA 104, 2614–2619 (2007).

    CAS  PubMed  Google Scholar 

  35. Sampathkumar, S.-G., Li, A. V., Jones, M. B., Sun, Z. & Yarema, K. J. Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology. Nat. Chem. Biol. 2, 149–152 (2006).

    CAS  PubMed  Google Scholar 

  36. Zhang, L., Bellve, K., Fogarty, K. & Kobertz, W. R. Fluorescent visualization of cellular proton fluxes. Cell Chem. Biol. 23, 1449–1457 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Han, S., Collins, B. E., Bengtson, P. & Paulson, J. C. Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nat. Chem. Biol. 1, 93–97 (2005).

    CAS  PubMed  Google Scholar 

  38. Tanaka, Y. & Kohler, J. J. Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc. 130, 3278–3279 (2008).

    CAS  PubMed  Google Scholar 

  39. Späte, A.-K., Schart, V. F., Schçllkopf, S., Niederwieser, A. & Wittmann, V. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering. Chem. Eur. J. 20, 16502–16508 (2014).

    PubMed  Google Scholar 

  40. Schart, V. F. et al. Triple orthogonal labeling of glycans by applying photoclick chemistry. ChemBioChem 20, 166–171 (2019).

    CAS  PubMed  Google Scholar 

  41. Xiong, D.-C. et al. Rapid probing of sialylated glycoproteins in vitro and in vivo via metabolic oligosaccharide engineering of a minimal cyclopropene reporter. Org. Biomol. Chem. 13, 3911–3917 (2015).

    CAS  PubMed  Google Scholar 

  42. Hassenrück, J. & Wittmann, V. Cyclopropene derivatives of aminosugars for metabolic glycoengineering. Beilstein. J. Org. Chem. 15, 584–601 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Wainman, Y. A. et al. Dual-sugar imaging using isonitrile and azido-based click chemistries. Org. Biomol. Chem. 11, 7297–7300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Saeui, C. T. et al. Pharmacological, physiochemical, and drug-relevant biological properties of short chain fatty acid hexosamine analogues used in metabolic glycoengineering. Mol. Pharmaceutics 15, 705–720 (2017).

    Google Scholar 

  45. Yarema, K. J., Mahal, L. K., Bruehl, R. E., Rodriguez, E. C. & Bertozzi, C. R. Metabolic delivery of ketone groups to sialic acid residues. Application to cell surface glycoform engineering. J. Biol. Chem. 273, 31168–31179 (1998).

    CAS  PubMed  Google Scholar 

  46. Hadfield, A. F., Mella, S. L. & Sartorelli, A. C. N-Acetyl-d-mannosamine analogues as potential inhibitors of sialic acid biosynthesis. J. Pharm. Sci. 72, 748–751 (1983).

    CAS  PubMed  Google Scholar 

  47. Sarkar, A. K., Fritz, T. A., Taylor, W. H. & Esko, J. D. Disaccharide uptake and priming in animal cells: inhibition of sialyl Lewis X by acetylated Gal β1->4GlcNAc β-O-naphthalenemethanol. Proc. Natl. Acad. Sci. USA 92, 3323–3327 (1995).

    CAS  PubMed  Google Scholar 

  48. Malicdan, M. C. V. et al. Peracetylated N-acetylmannosamine, a synthetic sugar molecule, efficiently rescues muscle phenotype and biochemical defects in mouse model of sialic acid-deficient myopathy. J. Biol. Chem. 287, 2689–2705 (2012).

    CAS  PubMed  Google Scholar 

  49. Kim, E. J. et al. Characterization of the metabolic flux and apoptotic effects of O-hydroxyl- and N-acyl-modified N-acetylmannosamine analogs in Jurkat cells. J. Biol. Chem. 279, 18342–18352 (2004).

    CAS  PubMed  Google Scholar 

  50. Sampathkumar, S.-G. et al. Targeting glycosylation pathways and the cell cycle: sugar-dependent activity of butyrate-carbohydrate cancer prodrugs. Chem. Biol. 13, 1265–1275 (2006).

    CAS  PubMed  Google Scholar 

  51. Campbell, C. T. et al. Targeting pro-invasive oncogenes with short chain fatty acid-hexosamine analogues inhibits the mobility of metastatic MDA-MB-231 breast cancer cells. J. Med. Chem. 51, 8135–8147 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Elmouelhi, N. et al. Hexosamine template. A platform for modulating gene expression and for sugar-based drug discovery. J. Med. Chem. 52, 2515–2530 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Aich, U. et al. Regioisomeric SCFA attachment to hexosamines separates metabolic flux from cytotoxicity and MUC1 suppression. ACS Chem. Biol. 3, 230–240 (2008).

    CAS  PubMed  Google Scholar 

  54. Almaraz, R. T. et al. Metabolic oligosaccharide engineering with N-acyl functionalized ManNAc analogues: cytotoxicity, metabolic flux, and glycan-display considerations. Biotechnol. Bioeng. 109, 992–1006 (2012).

    CAS  PubMed  Google Scholar 

  55. Wang, Z., Du, J., Che, P.-L., Meledeo, M. A. & Yarema, K. J. Hexosamine analogs: from metabolic glycoengineering to drug discovery. Curr. Opin. Chem. Biol. 13, 565–572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yin, B. et al. A novel sugar analog enhances sialic acid production and biotherapeutic sialylation in CHO cells. Biotechnol. Bioeng. 114, 1899–1902 (2017).

    CAS  PubMed  Google Scholar 

  57. Wang, Q. et al. Combining butyrated ManNAc with glycoengineered CHO cells improves EPO glycan quality and production. Biotechnol. J. 14, e1800186 (2019).

    PubMed  Google Scholar 

  58. Yin, B. et al. Butyrated ManNAc analog improves protein expression in Chinese hamster ovary cells. Biotechnol. Bioeng. 115, 1531–1541 (2018).

    CAS  PubMed  Google Scholar 

  59. Coburn, J. M. et al. Differential response of chondrocytes and chondrogenic-induced mesenchymal stem cells to C1-OH tributanoylated N-acetylhexosamines. PLOS ONE 8, e58899 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Coburn, J. M. et al. Short-chain fatty acid-modified hexosamine for tissue-engineering osteoarthritic cartilage. Tissue Eng. Part A 19, 2035–2044 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, C. et al. Local delivery of a carbohydrate analog for reducing arthritic inflammation and rebuilding cartilage. Biomater. 83, 93–101 (2016).

    CAS  Google Scholar 

  62. Kim, C. et al. Electrospun microfiber scaffolds with anti-inflammatory tributanoylated N-acetyl-d-glucosamine promote cartilage regeneration. Tissue Eng. Part A 22, 689–697 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Aich, U. et al. Development of delivery methods for carbohydrate-based drugs: controlled release of biologically-active short chain fatty acid-hexosamine analogs. Glycoconj. J. 27, 445–459 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, S. et al. Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry. ACS Nano 8, 2048–2063 (2014).

    CAS  PubMed  Google Scholar 

  65. Wang, H. et al. Targeted ultrasound-assisted cancer-selective chemical labeling and subsequent cancer imaging using click chemistry. Angew. Chem. Int. Ed. 55, 5452–5456 (2016).

    CAS  Google Scholar 

  66. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  67. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Min, Y. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 12, 877–882 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Azzopardi, E. A., Ferguson, E. L. & Thomas, D. W. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J. Antimicrob. Chemother. 68, 257–274 (2012).

    PubMed  Google Scholar 

  70. Molinaro, R. et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat. Mater. 15, 1037–1046 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Marti, C. N. et al. Endothelial dysfunction, arterial stiffness, and heart failure. J. Am. Coll. Cardiol. 60, 1455–1469 (2012).

    CAS  PubMed  Google Scholar 

  72. Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Ecker, D. M., Jones, S. D. & Levine, H. L. The therapeutic monoclonal antibody market. mAbs 7, 9–14 (2015).

    CAS  PubMed  Google Scholar 

  74. Fitzhugh, D. J. & Lockey, R. F. History of immunotherapy: the first 100 years. Immunol. Allergy Clin. North. Am. 31, 149–157 (2011).

    PubMed  Google Scholar 

  75. Ghaderi, D., Zhang, M., Hurtado-Ziola, N. & Varki, A. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol. Genet. Eng. Rev. 28, 147–176 (2012).

    CAS  PubMed  Google Scholar 

  76. Buettner, M. J., Shah, S. R., Saeui, C. T., Ariss, R. S. & Yarema, K. J. Improving immunotherapy through glycodesign. Front. Immunol. 9, 2485 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Dwek, R. A., Butters, T. D., Platt, F. M. & Zitzmann, N. Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug. Discov. 1, 65–75 (2002).

    CAS  PubMed  Google Scholar 

  78. Hossler, P., Khattak, S. & Li, Z. J. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiol. 19, 936–949 (2009).

    CAS  Google Scholar 

  79. Li, H. & d’Anjou, M. Pharmacological significance of glycosylation in therapeutic proteins. Curr. Opin. Biotechnol. 20, 678–684 (2009).

    CAS  PubMed  Google Scholar 

  80. Schiestl, M. et al. Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat. Biotechnol. 29, 310–312 (2011).

    CAS  PubMed  Google Scholar 

  81. Walsh, G. Biopharmaceutical benchmarks 2014. Nat. Biotechnol. 32, 992–1000 (2014).

    CAS  PubMed  Google Scholar 

  82. Hills, A. E., Patel, A., Boyd, P. & James, D. C. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol. Bioeng. 75, 239–251 (2001).

    CAS  PubMed  Google Scholar 

  83. Wong, N. S. et al. An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol. Bioeng. 107, 321–336 (2010).

    CAS  PubMed  Google Scholar 

  84. Dennis, J. W., Laferte, S., Waghorne, C., Breitman, M. L. & Kerbel, R. S. β1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 236, 582–585 (1987).

    CAS  PubMed  Google Scholar 

  85. Zhao, Y. et al. Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J. 275, 1939–1948 (2008).

    CAS  PubMed  Google Scholar 

  86. Elliott, S. et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat. Biotechnol. 21, 414–421 (2003).

    CAS  PubMed  Google Scholar 

  87. Sinclair, A. M. & Elliott, S. Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J. Pharm. Sci. 94, 1626–1635 (2005).

    CAS  PubMed  Google Scholar 

  88. Gu, X. & Wang, D. I. Improvement of interferon-γ sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol. Bioeng. 58, 642–648 (1998).

    CAS  PubMed  Google Scholar 

  89. Yorke, S. C. The application of N-acetylmannosamine to the mammalian cell culture production of recombinant human glycoproteins. Chem. New Zealand 77, 18–20 (2013).

    CAS  Google Scholar 

  90. Morell, A. G., Gregoriadis, G., Scheinberg, I. H., Hickman, J. & Ashwell, G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J. Biol. Chem. 246, 1461–1467 (1971).

    CAS  PubMed  Google Scholar 

  91. Ellies, L. G. et al. Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc. Natl. Acad. Sci. USA 99, 10042–10047 (2002).

    CAS  PubMed  Google Scholar 

  92. Raju, T. S. & Scallon, B. Fc glycans terminated with N-acetylglucosamine residues increase antibody resistance to papain. Biotechnol. Prog. 23, 964–971 (2007).

    CAS  PubMed  Google Scholar 

  93. Solá, R. J. & Griebenow, K. Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. Biodrugs 24, 9–21 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Tang, L., Persky, A. M., Hochhaus, G. & Meibohm, B. Pharmacokinetic aspects of biotechnology products. J. Pharm. Sci. 93, 2184–2204 (2004).

    CAS  PubMed  Google Scholar 

  95. Hu, Y., Shah, P., Clark, D. J., Ao, M. & Zhang, H. Reanalysis of global proteomic and phosphoproteomic data identified a large number of glycopeptides. Anal. Chem. 90, 8065–8071 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sung, Y. H., Song, Y. J., Lim, S. W., Chung, J. Y. & Lee, G. M. Effect of sodium butyrate on the production, heterogeneity and biological activity of human thrombopoietin by recombinant Chinese hamster ovary cells. J. Biotechnol. 112, 323–335 (2004).

    CAS  PubMed  Google Scholar 

  97. Okeley, N. M. et al. Metabolic engineering of monoclonal antibody carbohydrates for antibody−drug conjugation. Bioconjug. Chem. 24, 1650–1655 (2013).

    CAS  PubMed  Google Scholar 

  98. Li, X., Fang, T. & Boons, G.-J. Preparation of well-defined antibody–drug conjugates through glycan remodeling and strain-promoted azide–alkyne cycloadditions. Angew. Chem. Int. Ed. 53, 7179–7182 (2014).

    CAS  Google Scholar 

  99. Fukuda, M., Hiraoka, N. & Yeh, J.-C. C-Type lectins and sialyl Lewis X oligosaccharides. Versatile roles in cell–cell interaction. J. Cell Biol. 147, 467–470 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Xia, L., McDaniel, M., Yago, T., Doeden, A. & McEver, R. P. Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood 104, 3091–3096 (2004).

    CAS  PubMed  Google Scholar 

  101. Dykstra, B. et al. Glycoengineering of E-selectin ligands by intracellular versus extracellular fucosylation differentially affects osteotropism of human mesenchymal stem cells. Stem Cells 34, 2501–2511 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dagia, N. M. et al. G-CSF induces E-selectin ligand expression on human myeloid cells. Nat. Med. 12, 1185–1190 (2006).

    CAS  PubMed  Google Scholar 

  103. Sackstein, R. et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med. 14, 181–187 (2008).

    CAS  PubMed  Google Scholar 

  104. Thankamony, S. P. & Sackstein, R. Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 108, 2258–2263 (2011).

    CAS  PubMed  Google Scholar 

  105. Merzaban, J. S. et al. Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis. Glycobiol. 25, 1392–1409 (2015).

    Google Scholar 

  106. Donnelly, C. et al. Optimizing human Treg immunotherapy by Treg subset selection and E-selectin ligand expression. Sci. Rep. 8, 420 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Almaraz, R. T. et al. Metabolic flux increases glycoprotein sialylation: implications for cell adhesion and cancer metastasis. Mol. Cell. Proteom. 11, M112.017558 (2012).

    Google Scholar 

  108. Horstkorte, R., Rau, K., Reutter, W., Nöhring, S. & Lucka, L. Increased expression of the selectin ligand sialyl–Lewisx by biochemical engineering of sialic acids. Exp. Cell Res. 295, 549–554 (2004).

    CAS  PubMed  Google Scholar 

  109. Natunen, S. et al. Metabolic glycoengineering of mesenchymal stromal cells with N-propanoylmannosamine. Glycobiol. 23, 1004–1012 (2013).

    CAS  Google Scholar 

  110. Robinson, S. N. et al. Ex vivo fucosylation improves human cord blood engraftment in NOD-SCID IL-2Rγnull mice. Exp. Hematol. 40, 445–456 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Man, Y.-g et al. Tumor-infiltrating immune cells promoting tumor invasion and metastasis: existing theories. J. Cancer 4, 84–95 (2013).

    PubMed  PubMed Central  Google Scholar 

  112. Layek, B., Sadhukha, T. & Prabha, S. Glycoengineered mesenchymal stem cells as an enabling platform for two-step targeting of solid tumors. Biomater. 88, 97–109 (2016).

    CAS  Google Scholar 

  113. Mathew, M. P. et al. Metabolic flux-driven sialylation alters internalization, recycling, and drug sensitivity of the epidermal growth factor receptor (EGFR) in SW1990 pancreatic cancer cells. Oncotarget 7, 66491–66511 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Du, J. et al. Deciphering glycan linkages involved in Jurkat cell interactions with gold-coated nanofibers via sugar-displayed thiols. Bioorg. Med. Chem. Lett. 21, 4980–4984 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zardavas, D., Irrthum, A., Swanton, C. & Piccart, M. Clinical management of breast cancer heterogeneity. Nat. Rev. Clin. Oncol. 12, 381–394 (2015).

    CAS  PubMed  Google Scholar 

  116. Laughlin, S. T., Baskin, J. M., Amacher, S. L. & Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Codelli, J. A., Baskin, J. M., Agard, N. J. & Bertozzi, C. R. Second-generation difluorinated cyclooctynes for copper-free click chemistry. J. Am. Chem. Soc. 130, 11486–11493 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Neves, A. A. et al. Imaging sialylated tumor cell glycans in vivo. FASEB J. 25, 2528–2537 (2011).

    CAS  PubMed  Google Scholar 

  119. Koo, H. et al. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew. Chem. Int. Ed. 51, 11836–11840 (2012).

    CAS  Google Scholar 

  120. Zhang, P. et al. Bio-orthogonal AIE dots based on polyyne-bridged red-emissive AIEgen for tumor metabolic labeling and targeted imaging. Chem. Asian J. 14, 770–774 (2018).

    PubMed  Google Scholar 

  121. Nandi, A. et al. Global identification of O-GlcNAc-modified proteins. Anal. Chem. 78, 452–458 (2006).

    CAS  PubMed  Google Scholar 

  122. Tian, Y. et al. Identification of sialylated glycoproteins from metabolically oligosaccharide engineered pancreatic cells. Clin. Proteom. 12, 11 (2015).

    Google Scholar 

  123. Zhang, H., Li, X.-j, Martin, D. B. & Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660–666 (2003).

    CAS  PubMed  Google Scholar 

  124. Haun, R. S. et al. Bioorthogonal labeling cell-surface proteins expressed in pancreatic cancer cells to identify potential diagnostic/therapeutic biomarkers. Cancer Biol. Ther. 16, 1557–1565 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sun, S. et al. Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides. Nat. Biotechnol. 34, 84–88 (2016).

    CAS  PubMed  Google Scholar 

  126. Badr, H. A. et al. Harnessing cancer cell metabolism for theranostic applications using metabolic glycoengineering of sialic acid in breast cancer as a pioneering example. Biomater. 116, 158–173 (2017).

    CAS  Google Scholar 

  127. Gagiannis, D., Gossrau, R., Reutter, W., Zimmermann-Kordmann, M. & Horstkorte, R. Engineering the sialic acid in organs of mice using N-propanoylmannosamine. Biochim. Biophys. Acta 1770, 297–306 (2007).

    CAS  PubMed  Google Scholar 

  128. Leung, K. [18F]Fluoro-2-deoxy-2-d-glucose Molecular Imaging and Contrast Agent Database (MICAD) National Center for Biotechnology Information (US) https://www.ncbi.nlm.nih.gov/books/NBK23335 (2004).

  129. Saeui, C. T. et al. Integration of genetic and metabolic features related to sialic acid metabolism distinguishes human breast cell subtypes. PLOS One 13, e0195812 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Lee, S. et al. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface. Biomater. 139, 12–29 (2017).

    CAS  Google Scholar 

  131. Yoon, H. Y., Koo, H., Kim, K. & Kwon, I. C. Molecular imaging based on metabolic glycoengineering and bioorthogonal click chemistry. Biomater. 132, 28–36 (2017).

    CAS  Google Scholar 

  132. Sell, S. Cancer-associated carbohydrates identified by monoclonal antibodies. Hum. Pathol. 21, 1003–1019 (1990).

    CAS  PubMed  Google Scholar 

  133. Schultz, M. J. et al. The tumor-associated glycosyltransferase ST6Gal-I regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res. 76, 3978–3988 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Seidenfaden, R., Krauter, A., Schertzinger, F., Gerardy-Schahn, R. & Hildebrandt, H. Polysialic acid directs tumor cell growth by controlling heterophilic neural cell adhesion molecule interactions. Mol. Cell. Biol. 23, 5908–5918 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. Jr In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

    CAS  PubMed  Google Scholar 

  136. Jiang, T. et al. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. USA 101, 17867–17872 (2004).

    CAS  PubMed  Google Scholar 

  137. Blum, G., von Degenfeld, G., Merchant, M. J., Blau, H. M. & Bogyo, M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat. Chem. Biol. 3, 668–677 (2007).

    CAS  PubMed  Google Scholar 

  138. Chang, P. V., Dube, D. H., Sletten, E. M. & Bertozzi, C. R. A strategy for the selective imaging of glycans using caged metabolic precursors. J. Am. Chem. Soc. 132, 9516–9518 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Mohamed, M. M. & Sloane, B. F. Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6, 764–775 (2006).

    CAS  PubMed  Google Scholar 

  140. Bian, B. et al. Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis. Mol. Carcinog. 55, 671–687 (2016).

    CAS  PubMed  Google Scholar 

  141. Shim, M. K. et al. Cathepsin B-specific metabolic precursor for in vivo tumor-specific fluorescence imaging. Angew. Chem. Int. Ed. 55, 14698–14703 (2016).

    CAS  Google Scholar 

  142. Wang, H. et al. Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat. Chem. Biol. 13, 415–424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Galeano, B. et al. Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. J. Clin. Invest. 117, 1585–1594 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Keppler, O. T. et al. UDP-GlcNAc 2-epimerase: a regulator of cell surface sialylation. Science 284, 1372–1376 (1999).

    CAS  PubMed  Google Scholar 

  145. Khan, N. M. & M, H. T. Epigenetics in osteoarthritis: potential of HDAC inhibitors as therapeutics. Pharmacol. Res. 128, 73–79 (2018).

    PubMed  Google Scholar 

  146. Mathew, M. P. et al. Metabolic glycoengineering sensitizes drug-resistant pancreatic cancer cells to tyrosine kinase inhibitors erlotinib and gefitinib. Bioorg. Med. Chem. Lett. 25, 1223–1227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Chefalo, P., Pan, Y.-B., Nagy, N., Harding, C. & Guo, Z.-W. Preparation and immunological studies of protein conjugates of N-acylneuraminic acids. Glycoconj. J. 20, 407–414 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Pan, Y., Chefalo, P., Nagy, N., Harding, C. & Guo, Z. Synthesis and immunological properties of N-modified GM3 antigens as therapeutic cancer vaccines. J. Med. Chem. 48, 875–883 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Chefalo, P., Pan, Y., Nagy, N., Guo, Z. & Harding, C. V. Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-D-mannosamine. Biochem. 45, 3733–3739 (2006).

    CAS  Google Scholar 

  150. Qiu, L. et al. Combining synthetic carbohydrate vaccines with cancer cell glycoengineering for effective cancer immunotherapy. Cancer Immunol. Immunother. 61, 2045–2054 (2012).

    CAS  PubMed  Google Scholar 

  151. Qiu, L. et al. A novel cancer immunotherapy based on the combination of a synthetic carbohydrate-pulsed dendritic cell vaccine and glycoengineered cancer cells. Oncotarget 6, 5195–5203 (2015).

    PubMed  PubMed Central  Google Scholar 

  152. Li, S. et al. Biomarker-based metabolic labeling for redirected and enhanced immune response. ACS Chem. Biol. 13, 1686–1694 (2018).

    CAS  PubMed  Google Scholar 

  153. Sprung, R. et al. Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J. Proteome Res. 4, 950–957 (2005).

    CAS  PubMed  Google Scholar 

  154. Boyce, M. et al. Metabolic cross-talk allows labeling of O-linked β-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway. Proc. Natl. Acad. Sci. USA 108, 3141–3146 (2011).

    CAS  PubMed  Google Scholar 

  155. Hart, G. W. & Akimoto, Y. in Essentials of Glycobiology 2nd edn Ch. 18 (eds Varki, A. et al.) (Cold Spring Harbor Laboratory Press, 2009).

  156. Li, W. et al. Bio-orthogonal T cell targeting strategy for robustly enhancing cytotoxicity against tumor cells. Small 15, 1804383 (2019).

    Google Scholar 

  157. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    CAS  Google Scholar 

  158. Baskin, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA 104, 16793–16797 (2007).

    CAS  PubMed  Google Scholar 

  159. Dommerholt, J., Rutjes, F. P. J. T. & van Delft, F. L. Strain-promoted 1,3-dipolar cycloaddition of cycloalkynes and organic azides. Top. Curr. Chem. 374, 16 (2016).

    Google Scholar 

  160. Alberch, L. & Yarema, K. J. in Micro- and Nanoengineering of the Cell Surface Ch. 3 (eds. Karp, J. M. & Zhao, W.) 43-62 (William Andrew (Elsevier), 2014).

  161. Ning, X., Guo, J., Wolfert, M. A. & Boons, G.-J. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Huisgen cycloadditions. Angew. Chem. Int. Ed. 47, 2253–2255 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the US National Institutes of Health for financial support (grant no. R01 CA112314). C.A. thanks the Natural Sciences and Engineering Research Council of Canada for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and discussion of content. C.A., M.J.B. and K.J.Y. edited the manuscript prior to submission.

Corresponding author

Correspondence to Kevin J. Yarema.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks S. Hinderlich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Glycan

A compound in which monosaccharides are glycosidically linked to each other or to other biological molecules, such as proteins or lipids.

Chemoenzymatic glycan labelling

A technique in which cell-free systems, typically a glycosyltransferase and complementary nucleotide sugar, are used to introduce non-natural monosaccharides into glycoconjugates.

Glycosylation

An enzymatic process in which a glycan is covalently attached to a non-carbohydrate molecule.

Immunotherapy

A cancer treatment designed to boost the body’s natural immunity to detect and eradicate cancer cells.

Glycoconjugate

A molecule consisting of one or more glycans covalently linked to a non-carbohydrate moiety.

Chemoselective ligation reactions

Chemical reactions that are exclusive to two mutually specific functional groups.

Bioorthogonal functional groups

Chemical functional groups that exclusively react with a specific ligation partner under physiological conditions in living systems without perturbing native biochemical processes.

Whole-molecule effects

Biological activity derived from intact, ester-derivatized MGE analogues not observed in their monosaccharide or short-chain fatty acid metabolites.

Biotherapeutic proteins

Proteins produced for pharmaceutical purposes.

Sialylation

The enzymatic addition of sialic acid, which is an N-substituted or O-substituted derivative of neuraminic acid (a monosaccharide with a nine-carbon backbone), to a glycoconjugate.

Glycoproteins

A class of proteins with one or more covalently conjugated glycans.

Antibody–drug conjugates

Therapeutics that combine the antitumour activity of monoclonal antibodies with the (usually) cytotoxic activity of small-molecule drugs.

Antibody-dependent cellular cytotoxicity

A cell-mediated immune defence whereby effector cells actively lyse a target cell after its surface antigens are recognized by specific antibodies.

Complement-mediated cytotoxicity

Elimination of antibody-coated cells through the classical complement pathway, which leads to the formation of a membrane attack complex and cell lysis.

Antibody-dependent cellular phagocytosis

Mechanism through which antibody-coated foreign entities, such as pathogenic bacteria or cancer cells, are eliminated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agatemor, C., Buettner, M.J., Ariss, R. et al. Exploiting metabolic glycoengineering to advance healthcare. Nat Rev Chem 3, 605–620 (2019). https://doi.org/10.1038/s41570-019-0126-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-019-0126-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research