Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T cell subsets and functions in atherosclerosis

Abstract

Atherosclerosis is a chronic inflammatory disease of the arterial wall and the primary underlying cause of cardiovascular disease. Data from in vivo imaging, cell-lineage tracing and knockout studies in mice, as well as clinical interventional studies and advanced mRNA sequencing techniques, have drawn attention to the role of T cells as critical drivers and modifiers of the pathogenesis of atherosclerosis. CD4+ T cells are commonly found in atherosclerotic plaques. A large body of evidence indicates that T helper 1 (TH1) cells have pro-atherogenic roles and regulatory T (Treg) cells have anti-atherogenic roles. However, Treg cells can become pro-atherogenic. The roles in atherosclerosis of other TH cell subsets such as TH2, TH9, TH17, TH22, follicular helper T cells and CD28null T cells, as well as other T cell subsets including CD8+ T cells and γδ T cells, are less well understood. Moreover, some T cells seem to have both pro-atherogenic and anti-atherogenic functions. In this Review, we summarize the knowledge on T cell subsets, their functions in atherosclerosis and the process of T cell homing to atherosclerotic plaques. Much of our understanding of the roles of T cells in atherosclerosis is based on findings from experimental models. Translating these findings into human disease is challenging but much needed. T cells and their specific cytokines are attractive targets for developing new preventive and therapeutic approaches including potential T cell-related therapies for atherosclerosis.

Key points

  • Atherosclerosis is a chronic inflammatory disease, and accumulating evidence supports the critical role of T cells as drivers and modifiers of this condition.

  • T cells drive immune responses to peptide epitopes related to atherosclerosis, such as peptides derived from apolipoprotein B.

  • CD4+ T helper 1 (TH1) cells and natural killer T cells have pro-atherogenic properties, whereas regulatory T (Treg) cells have anti-atherogenic functions.

  • The role of other TH cell subsets, such as TH2, TH9, TH17, TH22 and follicular helper T (TFH) cells, and of CD8+ T cells and γδ T cells, in the development and progression of atherosclerosis remains controversial.

  • During atherosclerosis progression, Treg cells can convert into pro-inflammatory T cell subsets, such as TH1, TH17 or TFH cells.

  • T cell recruitment to the atherosclerotic plaque occurs via chemokines and chemokine receptors such as CC-chemokine receptor 5 (CCR5), CXC-chemokine receptor 3 (CXCR3) and CXCR6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Role of T helper cells and regulatory T cells in the pathogenesis of atherosclerosis.
Fig. 2: Role of CD8+ T cells, iNKT cells and γδ T cells in atherosclerosis.
Fig. 3: Tools for sampling and analysis of T cells in atherosclerosis.

Similar content being viewed by others

References

  1. Kobiyama, K. & Ley, K. Atherosclerosis. Circ. Res. 123, 1118–1120 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. He, S. et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature 566, 115–119 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kimura, T. et al. Regulatory CD4+ T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 138, 1130–1143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steinman, R. M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Koltsova, E. K. et al. Dynamic T cell–APC interactions sustain chronic inflammation in atherosclerosis. J. Clin. Invest. 122, 3114–3126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA 92, 3893–3897 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kobiyama, K., Saigusa, R. & Ley, K. Vaccination against atherosclerosis. Curr. Opin. Immunol. 59, 15–24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shah, P. K., Chyu, K.-Y., Dimayuga, P. C. & Nilsson, J. Vaccine for atherosclerosis. J. Am. Coll. Cardiol. 64, 2779–2791 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Chyu, K.-Y. & Shah, P. K. In pursuit of an atherosclerosis vaccine: chasing the Holy Grail. Circ. Res. 123, 1121–1123 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Tse, K. et al. Atheroprotective vaccination with MHC-II restricted peptides from ApoB-100. Front. Immunol. 4, 493 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lin, Z. et al. Deep sequencing of the T cell receptor β repertoire reveals signature patterns and clonal drift in atherosclerotic plaques and patients. Oncotarget 8, 99312–99322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Paulsson, G., Zhou, X., Törnquist, E. & Hansson, G. K. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 20, 10–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Colantonio, L. D. et al. Association of serum lipids and coronary heart disease in contemporary observational studies. Circulation 133, 256–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Pothineni, N. V. K. et al. Infections, atherosclerosis, and coronary heart disease. Eur. Heart J. 38, 3195–3201 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Hermansson, A. et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J. Exp. Med. 207, 1081–1093 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Winkels, H. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hansson, G. K. et al. Localization of T lymphocytes and macrophages in fibrous and complicated human atherosclerotic plaques. Atherosclerosis 72, 135–141 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Jonasson, L., Holm, J., Skalli, O., Bondjers, G. & Hansson, G. K. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6, 131–138 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Cole, J. E. et al. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc. Res. 114, 1360–1371 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Winkels, H., Ehinger, E., Goshesh, Y., Wolf, D. & Ley, K. Atherosclerosis in the single-cell era. Curr. Opin. Lipidol. 29, 389–396 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gräbner, R. et al. Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE −/− mice. J. Exp. Med. 206, 233–248 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gu, W. et al. Adventitial cell atlas of wt (wild type) and ApoE (apolipoprotein E)-deficient mice defined by single-cell RNA sequencing. Arterioscler. Thromb. Vasc. Biol. 39, 1055–1071 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, J. & Paul, W. E. CD4 T cells: fates, functions, and faults. Blood 112, 1557–1569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Emeson, E. E., Shen, M.-L. & Bell, C. G. H. Inhibition of atherosclerosis in CD4 T-cell-ablated and nude (nu/fu) C57BL/6 hyperlipidemic mice. Am. J. Pathol. 149, 675–685 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou, X., Robertson, A.-K. L., Rudling, M., Parini, P. & Hansson, G. K. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ. Res. 96, 427–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Koltsova, E. K. & Ley, K. How dendritic cells shape atherosclerosis. Trends Immunol. 32, 540–547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zernecke, A. Dendritic cells in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 35, 763–770 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Clément, M. et al. Deletion of IRF8 (interferon regulatory factor 8)-dependent dendritic cells abrogates proatherogenic adaptive immunity. Circ. Res. 122, 813–820 (2018).

    Article  PubMed  CAS  Google Scholar 

  33. Lutgens, E., Lievens, D., Beckers, L., Donners, M. & Daemen, M. CD40 and its ligand in atherosclerosis. Trends Cardiovasc. Med. 17, 118–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lameijer, M. et al. Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nat. Biomed. Eng. 2, 279–292 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolf, D. et al. Binding of CD40L to Mac-1’s I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis — but does not affect immunity and thrombosis in mice. Circ. Res. 109, 1269–1279 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Buono, C. et al. B7-1/B7-2 costimulation regulates plaque antigen–specific T-cell responses and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 109, 2009–2015 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Matsumoto, T. et al. Overexpression of cytotoxic T-lymphocyte–associated antigen-4 prevents atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 36, 1141–1151 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gotsman, I. et al. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J. Clin. Invest. 117, 2974–2982 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Foks, A. C. et al. Interruption of the OX40–OX40 ligand pathway in LDL receptor–deficient mice causes regression of atherosclerosis. J. Immunol. 191, 4573–4580 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Jeon, H. J. et al. CD137 (4–1BB) deficiency reduces atherosclerosis in hyperlipidemic mice. Circulation 121, 1124–1133 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Lievens, D. et al. Abrogated transforming growth factor beta receptor II (TGFβRII) signalling in dendritic cells promotes immune reactivity of T cells resulting in enhanced atherosclerosis. Eur. Heart J. 34, 3717–3727 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Subramanian, M., Thorp, E., Hansson, G. K. & Tabas, I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J. Clin. Invest. 123, 179–188 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Weber, C. et al. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J. Clin. Invest. 121, 2898–2910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Niessner, A. et al. Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-α. Circulation 114, 2482–2489 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Buono, C. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl Acad. Sci. USA 102, 1596–1601 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Frostegård, J. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 145, 33–43 (1999).

    Article  PubMed  Google Scholar 

  48. Li, J. et al. CCR5+T-bet+FoxP3+ effector CD4 T cells drive atherosclerosis. Circ. Res. 118, 1540–1552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Butcher, M. J. et al. Atherosclerosis-driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ Th1/Tregs. Circ. Res. 119, 1190–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buono, C. et al. Influence of interferon-γ on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler. Thromb. Vasc. Biol. 23, 454–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Gupta, S. et al. IFN-γ potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest. 99, 2752–2761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Whitman, S. C., Ravisankar, P., Elam, H. & Daugherty, A. Exogenous interferon-γ enhances atherosclerosis in apolipoprotein E−/− mice. Am. J. Pathol. 157, 1819–1824 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Amento, E. P., Ehsani, N., Palmer, H. & Libby, P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler. Thromb. 11, 1223–1230 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Orecchioni, M., Ghosheh, Y., Pramod, A. B. & Ley, K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS–) vs. alternatively activated macrophages. Front. Immunol. 10, 1084 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rocha, V. Z. et al. Interferon-γ, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ. Res. 103, 467–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tellides, G. et al. Interferon-γ elicits arteriosclerosis in the absence of leukocytes. Nature 403, 207–211 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Y. et al. Interferon-γ induces human vascular smooth muscle cell proliferation and intimal expansion by phosphatidylinositol 3-kinase–dependent mammalian target of rapamycin raptor complex 1 activation. Circ. Res. 101, 560–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Niwa, T. et al. Interferon-γ produced by bone marrow-derived cells attenuates atherosclerotic lesion formation in LDLR-deficient mice. J. Atheroscler. Thromb. 11, 79–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Vergnes, L., Phan, J., Strauss, M., Tafuri, S. & Reue, K. Cholesterol and cholate components of an atherogenic diet induce distinct stages of hepatic inflammatory gene expression. J. Biol. Chem. 278, 42774–42784 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Tracy, R. P. et al. T-helper type 1 bias in healthy people is associated with cytomegalovirus serology and atherosclerosis: the Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2, e000117 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Engelbertsen, D. et al. T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arterioscler. Thromb. Vasc. Biol. 33, 637–644 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Davenport, P. & Tipping, P. G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am. J. Pathol. 163, 1117–1125 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. King, V. L., Szilvassy, S. J. & Daugherty, A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor−/− mice. Arterioscler. Thromb. Vasc. Biol. 22, 456–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. King, V. L., Cassis, L. A. & Daugherty, A. Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. Am. J. Pathol. 171, 2040–2047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Engelbertsen, D. et al. Induction of T helper 2 responses against human apolipoprotein B100 does not affect atherosclerosis in ApoE−/− mice. Cardiovasc. Res. 103, 304–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Sämpi, M. et al. Plasma interleukin-5 levels are related to antibodies binding to oxidized low-density lipoprotein and to decreased subclinical atherosclerosis. J. Am. Coll. Cardiol. 52, 1370–1378 (2008).

    Article  PubMed  CAS  Google Scholar 

  67. Silveira, A. et al. Plasma IL-5 concentration and subclinical carotid atherosclerosis. Atherosclerosis 239, 125–130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Avramakis, G. et al. Platelets and white blood cell subpopulations among patients with myocardial infarction and unstable angina. Platelets 18, 16–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Binder, C. J. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114, 427–437 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cardilo-Reis, L. et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol. Med. 4, 1072–1086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miller, A. M. et al. IL-33 reduces the development of atherosclerosis. J. Exp. Med. 205, 339–346 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martin, P. et al. Atherosclerosis severity is not affected by a deficiency in IL-33/ST2 signaling: deficiency in IL-33 signaling does not affect atherosclerosis severity. Immun. Inflamm. Dis. 3, 239–246 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Walker, J. A., Barlow, J. L. & McKenzie, A. N. J. Innate lymphoid cells — how did we miss them? Nat. Rev. Immunol. 13, 75–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Newland, S. A. et al. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nat. Commun. 8, 15781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kaplan, M. H. Th9 cells: differentiation and disease. Immunol. Rev. 252, 104–115 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Gregersen, I. et al. Increased systemic and local interleukin 9 levels in patients with carotid and coronary atherosclerosis. PLoS One 8, e72769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin, Y. et al. Circulating Th22 and Th9 levels in patients with acute coronary syndrome. Mediators Inflamm. 2013, 1–10 (2013).

    Google Scholar 

  78. Zhang, W. et al. IL-9 aggravates the development of atherosclerosis in ApoE−/− mice. Cardiovasc. Res. 106, 453–464 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. McGeachy, M. J., Cua, D. J. & Gaffen, S. L. The IL-17 family of cytokines in health and disease. Immunity 50, 892–906 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marks, B. R. et al. Thymic self-reactivity selects natural interleukin 17–producing T cells that can regulate peripheral inflammation. Nat. Immunol. 10, 1125–1132 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484, 514–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Taleb, S., Tedgui, A. & Mallat, Z. IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. Arterioscler. Thromb. Vasc. Biol. 35, 258–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nat. Immunol. 8, 1390–1397 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pinderski Oslund, L. J. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 19, 2847–2853 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Stark, M. A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Usui, F. et al. Interleukin-17 deficiency reduced vascular inflammation and development of atherosclerosis in Western diet-induced apoE-deficient mice. Biochem. Biophys. Res. Commun. 420, 72–77 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Smith, E. et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121, 1746–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Erbel, C. et al. Inhibition of IL-17A attenuates atherosclerotic lesion development in ApoE-deficient mice. J. Immunol. 183, 8167–8175 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Danzaki, K. et al. Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 32, 273–280 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Madhur, M. S. et al. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 1565–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Butcher, M. J., Gjurich, B. N., Phillips, T. & Galkina, E. V. The IL-17A/IL-17RA axis plays a proatherogenic role via the regulation of aortic myeloid cell recruitment. Circ. Res. 110, 675–687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Taleb, S. et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J. Exp. Med. 206, 2067–2077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brauner, S. et al. Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content. Cardiovasc. Res. 114, 158–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Gisterå, A. et al. Transforming growth factor-β signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci. Transl Med. 5, 196ra100 (2013).

    Article  PubMed  CAS  Google Scholar 

  98. Hashmi, S. & Zeng, Q. T. Role of interleukin-17 and interleukin-17-induced cytokines interleukin-6 and interleukin-8 in unstable coronary artery disease. Coron. Artery Dis. 17, 699–706 (2006).

    Article  PubMed  Google Scholar 

  99. Cheng, X. et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin. Immunol. 127, 89–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Eid, R. E. et al. Interleukin-17 and interferon-γ are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119, 1424–1432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Simon, T. et al. Circulating levels of interleukin-17 and cardiovascular outcomes in patients with acute myocardial infarction. Eur. Heart J. 34, 570–577 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Azizi, G., Yazdani, R. & Mirshafiey, A. Th22 cells in autoimmunity: a review of current knowledge. Eur. Ann. Allergy Clin. Immunol. 47, 108–117 (2015).

    CAS  PubMed  Google Scholar 

  103. Zhang, L. et al. Elevated frequencies of circulating Th22 cell in addition to Th17 cell and Th17/Th1 cell in patients with acute coronary syndrome. PLoS One 8, e71466 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Xia, Q. et al. Characterisation of IL-22 and interferon-gamma-inducible chemokines in human carotid plaque. Int. J. Cardiol. 154, 187–189 (2012).

    Article  PubMed  Google Scholar 

  105. Rattik, S. et al. IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice. Atherosclerosis 242, 506–514 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Fatkhullina, A. R. et al. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity 49, 943–957.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Crotty, S. T Follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1132–1148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ryu, H. et al. Atherogenic dyslipidemia promotes autoimmune follicular helper T cell responses via IL-27. Nat. Immunol. 19, 583–593 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Nus, M. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat. Med. 23, 601–610 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Clement, M. et al. Control of the T follicular helper–germinal center B-cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation 131, 560–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun. 9, 1095 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Weng, N., Akbar, A. N. & Goronzy, J. CD28- T cells: their role in the age-associated decline of immune function. Trends Immunol. 30, 306–312 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dumitriu, I. E. et al. High levels of costimulatory receptors OX40 and 4-1BB characterize CD4+CD28null T cells in patients with acute coronary syndrome. Circ. Res. 110, 857–869 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Téo, F. H. et al. Characterization of CD4+CD28null T cells in patients with coronary artery disease and individuals with risk factors for atherosclerosis. Cell. Immunol. 281, 11–19 (2013).

    Article  PubMed  CAS  Google Scholar 

  115. Liuzzo, G. et al. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 101, 2883–2888 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Kovalcsik, E., Antunes, R. F., Baruah, P., Kaski, J. C. & Dumitriu, I. E. Proteasome-mediated reduction in proapoptotic molecule Bim renders CD4+CD28null T cells resistant to apoptosis in acute coronary syndrome. Circulation 131, 709–720 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Yadav, A. K., Kumar, V. & Jha, V. Heat shock proteins 60 and 70 specific proinflammatory and cytotoxic response of CD4+CD28null cells in chronic kidney disease. Mediators Inflamm. 2013, 384807 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Roy, P., Ali, A. J., Kobiyama, K., Ghosheh, Y. & Ley, K. Opportunities for an atherosclerosis vaccine: from mice to humans. Vaccine https://doi.org/10.1016/j.vaccine.2019.12.039 (2020).

  119. Okba, M. A. et al. Expanded peripheral CD4+CD28null T cells and its association with atherosclerotic changes in patients with end stage renal disease on hemodialysis. Hum. Immunol. 80, 748–754 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Roncarolo, M.-G. & Gregori, S. Is FOXP3 a bona fide marker for human regulatory T cells? Eur. J. Immunol. 38, 925–927 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Klingenberg, R. et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Invest. 123, 1323–1334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mor, A., Luboshits, G., Planer, D., Keren, G. & George, J. Altered status of CD4+CD25+ regulatory T cells in patients with acute coronary syndromes. Eur. Heart J. 27, 2530–2537 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. George, J. et al. Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis 222, 519–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Wigren, M. et al. Low levels of circulating CD4+FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler. Thromb. Vasc. Biol. 32, 2000–2004 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Barth, S. D. et al. The ratio of regulatory (FOXP3+) to total (CD3+) T cells determined by epigenetic cell counting and cardiovascular disease risk: a prospective case-cohort study in non-diabetics. EBioMedicine 11, 151–156 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ammirati, E. et al. Circulating CD4+CD25hiCD127lo regulatory T-cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 1832–1841 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Björkbacka, H. Can circulating regulatory T cells predict cardiovascular disease? EBioMedicine 11, 15–16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Robertson, A.-K. L. et al. Disruption of TGF-β signaling in T cells accelerates atherosclerosis. J. Clin. Invest. 112, 1342–1350 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Foks, A. C., Lichtman, A. H. & Kuiper, J. Treating atherosclerosis with regulatory T cells. Arterioscler. Thromb. Vasc. Biol. 35, 280–287 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Dinh, T. N. et al. Cytokine therapy with interleukin-2/anti–interleukin-2 monoclonal antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis. Circulation 126, 1256–1266 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Kita, T. et al. Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice. Cardiovasc. Res. 102, 107–117 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Caligiuri, G. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med. 9, 10–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Joly, A.-L. et al. Alternative splicing of FOXP3 controls regulatory T cell effector functions and is associated with human atherosclerotic plaque stability. Circ. Res. 122, 1385–1394 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Wigren, M. et al. Lack of ability to present antigens on major histocompatibility complex class II molecules aggravates atherosclerosis in ApoE−/− mice. Circulation 139, 2554–2566 (2019).

    Article  CAS  PubMed  Google Scholar 

  135. Guasti, L. et al. Relationship between regulatory T cells subsets and lipid profile in dyslipidemic patients: a longitudinal study during atorvastatin treatment. BMC Cardiovasc. Disord. 16, 26 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Mailer, R. K. W., Gisterå, A., Polyzos, K. A., Ketelhuth, D. F. J. & Hansson, G. K. Hypercholesterolemia induces differentiation of regulatory T cells in the liver. Circ. Res. 120, 1740–1753 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Maganto-García, E., Tarrio, M. L., Grabie, N., Bu, D. & Lichtman, A. H. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 124, 185–195 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Cheng, H.-Y. et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J. Clin. Invest. 126, 3236–3246 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Ley, K. 2015 Russell Ross Memorial Lecture in Vascular Biology: Protective Autoimmunity in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 36, 429–438 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Komatsu, N. et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gisterå, A. et al. Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation 138, 2513–2526 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Jia, L. et al. Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease. Atherosclerosis 228, 346–352 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Di Pilato, M. et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature 570, 112–116 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Rosenbaum, M. et al. Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nat. Commun. 10, 2352 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Akamatsu, M. et al. Conversion of antigen-specific effector/memory T cells into Foxp3-expressing Treg cells by inhibition of CDK8/19. Sci. Immunol. 4, eaaw2707 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Gagliani, N. et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 19, 739–746 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Mallat, Z. et al. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 108, 1232–1237 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Zhu, Z. et al. Function of T regulatory type 1 cells is down-regulated and is associated with the clinical presentation of coronary artery disease. Hum. Immunol. 79, 564–570 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Bergström, I., Backteman, K., Lundberg, A., Ernerudh, J. & Jonasson, L. Persistent accumulation of interferon-γ-producing CD8+CD56+ T cells in blood from patients with coronary artery disease. Atherosclerosis 224, 515–520 (2012).

    Article  PubMed  CAS  Google Scholar 

  152. Hwang, Y. et al. Expansion of CD8+ T cells lacking the IL-6 receptor α chain in patients with coronary artery diseases (CAD). Atherosclerosis 249, 44–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Gewaltig, J., Kummer, M., Koella, C., Cathomas, G. & Biedermann, B. C. Requirements for CD8 T-cell migration into the human arterial wall. Hum. Pathol. 39, 1756–1762 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. Kolbus, D. et al. CD8+ T cell activation predominate early immune responses to hypercholesterolemia in Apoe−/− mice. BMC Immunol. 11, 58 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. van der Wal, A. C., Das, P. K., Bentz van de Berg, D., van der Loos, C. M. & Becker, A. E. Atherosclerotic lesions in humans. In situ immunophenotypic analysis suggesting an immune mediated response. Lab. Invest. 61, 166–170 (1989).

    PubMed  Google Scholar 

  156. Rossmann, A. et al. T-cells from advanced atherosclerotic lesions recognize hHSP60 and have a restricted T-cell receptor repertoire. Exp. Gerontol. 43, 229–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Paul, V. S. V. Quantification of various inflammatory cells in advanced atherosclerotic plaques. J. Clin. Diagn. Res. 10, EC35–EC38 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Dimayuga, P. C. et al. Identification of apoB-100 peptide-specific CD8+ T cells in. atherosclerosis. J. Am. Heart Assoc. 6, e005318 (2017).

    PubMed  Google Scholar 

  159. Cochain, C. et al. CD8+ T cells regulate monopoiesis and circulating Ly6Chigh monocyte levels in atherosclerosis in mice. Circ. Res. 117, 244–253 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Kyaw, T. et al. Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in ApoE-deficient mice. Circulation 127, 1028–1039 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Seijkens, T. T. P. et al. Deficiency of the T cell regulator Casitas B-cell lymphoma-B aggravates atherosclerosis by inducing CD8+ T cell-mediated macrophage death. Eur. Heart J. 40, 372–382 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Chyu, K.-Y. et al. CD8+ T cells mediate the athero-protective effect of immunization with an ApoB-100 peptide. PLoS One 7, e30780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Honjo, T. et al. ApoB-100-related peptide vaccine protects against angiotensin II–induced aortic aneurysm formation and rupture. J. Am. Coll. Cardiol. 65, 546–556 (2015).

    Article  CAS  PubMed  Google Scholar 

  164. van Duijn, J. et al. CD8+ T-cells contribute to lesion stabilization in advanced atherosclerosis by limiting macrophage content and CD4+ T-cell responses. Cardiovasc. Res. 115, 729–738 (2019).

    Article  PubMed  CAS  Google Scholar 

  165. Getz, G. S. & Reardon, C. A. Natural killer T cells in atherosclerosis. Nat. Rev. Cardiol. 14, 304–314 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Bennstein, S. B. Unraveling natural killer T-cells development. Front. Immunol. 8, 1950 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Bondarenko, S., Catapano, A. L. & Norata, G. D. The CD1d-natural killer T cell axis in atherosclerosis. J. Innate Immun. 6, 3–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Nakai, Y. et al. Natural killer T cells accelerate atherogenesis in mice. Blood 104, 2051–2059 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Tupin, E. et al. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med. 199, 417–422 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Major, A. S. et al. Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 24, 2351–2357 (2004).

    Article  CAS  PubMed  Google Scholar 

  171. van Puijvelde, G. et al. Effect of natural killer T cell activation on initiation of atherosclerosis. Thromb. Haemost. 102, 223–230 (2009).

    Article  PubMed  CAS  Google Scholar 

  172. Li, Y. et al. CD4+ natural killer T cells potently augment aortic root atherosclerosis by perforin- and granzyme B-dependent cytotoxicity. Circ. Res. 116, 245–254 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Aslanian, A. M., Chapman, H. A. & Charo, I. F. Transient role for CD1d-restricted natural killer T cells in the formation of atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 25, 628–632 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. VanderLaan, P. A. et al. Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis. Am. J. Pathol. 170, 1100–1107 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rogers, L. et al. Deficiency of invariant Va14 natural killer T cells decreases atherosclerosis in LDL receptor null mice. Cardiovasc. Res. 78, 167–174 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Nielsen, M. M., Witherden, D. A. & Havran, W. L. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 17, 733–745 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Cheng, H.-Y. et al. Increased cholesterol content in gammadelta (γδ) T lymphocytes differentially regulates their activation. PLoS One 8, e63746 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cheng, H.-Y., Wu, R. & Hedrick, C. C. Gammadelta (γδ) T lymphocytes do not impact the development of early atherosclerosis. Atherosclerosis 234, 265–269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Vu, D. M. et al. γδT cells are prevalent in the proximal aorta and drive nascent atherosclerotic lesion progression and neutrophilia in hypercholesterolemic mice. PLoS One 9, 12 (2014).

    Google Scholar 

  180. Kleindienst, R. et al. Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am. J. Pathol. 142, 1927–1937 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zernecke, A., Shagdarsuren, E. & Weber, C. Chemokines in atherosclerosis: an update. Arterioscler. Thromb. Vasc. Biol. 28, 1897–1908 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Galkina, E. et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J. Exp. Med. 203, 1273–1282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. MacRitchie, N. et al. The aorta can act as a site of naïve CD4+ T cell priming. Cardiovasc. Res. 116, 306–316 (2020).

    PubMed  Google Scholar 

  184. Li, J. & Ley, K. Lymphocyte migration into atherosclerotic plaque. Arterioscler. Thromb. Vasc. Biol. 35, 40–49 (2015).

    Article  PubMed  CAS  Google Scholar 

  185. Mondini, M. et al. CCR2-dependent recruitment of Tregs and monocytes following radiotherapy is associated with TNFα-mediated resistance. Cancer Immunol. Res. 7, 376–387 (2019).

    Article  PubMed  Google Scholar 

  186. Braunersreuther, V. et al. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 27, 373–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. Potteaux, S. et al. Chemokine receptor CCR1 disruption in bone marrow cells enhances atherosclerotic lesion development and inflammation in mice. Mol. Med. 11, 16–20 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Braunersreuther, V. et al. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler. Thromb. Vasc. Biol. 28, 1090–1096 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Potteaux, S. et al. Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Arterioscler. Thromb. Vasc. Biol. 26, 1858–1863 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Kuziel, W. A. et al. CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis 167, 25–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  191. Quinones, M. P. et al. CC chemokine receptor 5 influences late-stage atherosclerosis. Atherosclerosis 195, e92–e103 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. von Hundelshausen, P. et al. Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Sci. Transl Med. 9, eaah6650 (2017).

    Article  CAS  Google Scholar 

  193. Koenen, R. R. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med. 15, 97–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Veillard, N. R. et al. Differential influence of chemokine receptors CCR2 and CXCR3 in development of atherosclerosis in vivo. Circulation 112, 870–878 (2005).

    Article  CAS  PubMed  Google Scholar 

  195. Mach, F. et al. Differential expression of three T lymphocyte-activating CXC chemokines by human atheroma-associated cells. J. Clin. Invest. 104, 1041–1050 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Groom, J. R. et al. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37, 1091–1103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. van Wanrooij, E. J. A. et al. CXCR3 antagonist NBI-74330 attenuates atherosclerotic plaque formation in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 251–257 (2008).

    Article  PubMed  CAS  Google Scholar 

  198. van Wanrooij, E. J. A. et al. HIV entry inhibitor TAK-779 attenuates atherogenesis in low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25, 2642–2647 (2005).

    Article  PubMed  CAS  Google Scholar 

  199. Niki, T. et al. Elevated concentration of interferon-inducible protein of 10 kD (IP-10) is associated with coronary atherosclerosis. Int. Heart. J. 56, 269–272 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Heller, E. A. et al. Chemokine CXCL10 promotes atherogenesis by modulating the local balance of effector and regulatory T cells. Circulation 113, 2301–2312 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Lupieri, A. et al. Smooth muscle cells-derived CXCL10 prevents endothelial healing through PI3Kγ-dependent T cells response. Cardiovasc. Res. 116, 438–449 (2020).

    PubMed  Google Scholar 

  202. Kim, C. H. et al. Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential. J. Clin. Invest. 107, 595–601 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Galkina, E. et al. CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-γ production, and macrophage accumulation in the aortic wall. Circulation 116, 1801–1811 (2007).

    Article  CAS  PubMed  Google Scholar 

  204. Butcher, M. J., Wu, C.-I., Waseem, T. & Galkina, E. V. CXCR6 regulates the recruitment of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas. Int. Immunol. 28, 255–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Wuttge, D. M. et al. CXCL16/SR-PSOX is an interferon-γ-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 24, 750–755 (2004).

    Article  CAS  PubMed  Google Scholar 

  206. Andersen, T. et al. C-X-C ligand 16 is an independent predictor of cardiovascular death and morbidity in acute coronary syndromes. Arterioscler. Thromb. Vasc. Biol. 39, 2402–2410 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Aslanian, A. M. & Charo, I. F. Targeted disruption of the scavenger receptor and chemokine CXCL16 accelerates atherosclerosis. Circulation 114, 583–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Minami, M. et al. Expression of SR-PSOX, a novel cell-surface scavenger receptor for phosphatidylserine and oxidized LDL in human atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 21, 1796–1800 (2001).

    Article  CAS  PubMed  Google Scholar 

  209. Sallusto, F., Lenig, D., Förster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  210. Damås, J. K. et al. Enhanced expression of the homeostatic chemokines CCL19 and CCL21 in clinical and experimental atherosclerosis: possible pathogenic role in plaque destabilization. Arterioscler. Thromb. Vasc. Biol. 27, 614–620 (2007).

    Article  PubMed  CAS  Google Scholar 

  211. Trogan, E. et al. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc. Natl Acad. Sci. USA 103, 3781–3786 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wan, W., Lionakis, M. S., Liu, Q., Roffê, E. & Murphy, P. M. Genetic deletion of chemokine receptor Ccr7 exacerbates atherogenesis in ApoE-deficient mice. Cardiovasc. Res. 97, 580–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Luchtefeld, M. et al. Chemokine receptor 7 knockout attenuates atherosclerotic plaque development. Circulation 122, 1621–1628 (2010).

    Article  CAS  PubMed  Google Scholar 

  214. Williams, J. W., Huang, L. & Randolph, G. J. Cytokine circuits in cardiovascular disease. Immunity 50, 941–954 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  216. Kimura, T. et al. Atheroprotective vaccination with MHC-II-restricted ApoB peptides induces peritoneal IL-10-producing CD4 T cells. Am. J. Physiol. Heart Circ. Physiol. 312, H781–H790 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Zhao, T. X. et al. Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial. BMJ Open 8, e022452 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Cipriani, S. et al. Efficacy of the CCR5 antagonist maraviroc in reducing early, ritonavir-induced atherogenesis and advanced plaque progression in mice. Circulation 127, 2114–2124 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Francisci, D. et al. Maraviroc intensification modulates atherosclerotic progression in HIV-suppressed patients at high cardiovascular risk. a randomized, crossover pilot study. Open Forum Infect. Dis. 6, ofz112 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Libby, P. Seeing and sampling the surface of the atherosclerotic plaque: red or white can make blue. Arterioscler. Thromb. Vasc. Biol. 36, 2275–2277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. West, N. E. J. et al. Percutaneous sampling of local biomolecule gradients across coronary artery atherosclerotic plaques. JACC Basic Transl Sci. 2, 646–654 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Lee, R. et al. A novel workflow combining plaque imaging, plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption. Clin. Proteomics 14, 22 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Bennett, B. J. et al. Genetic architecture of atherosclerosis in mice: a systems genetics analysis of common inbred strains. PLoS Genet. 11, e1005711 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Strand, V. et al. Immunogenicity of biologics in chronic inflammatory diseases: a systematic review. BioDrugs 31, 299–316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Krzywinski, M. & Altman, N. Power and sample size. Nat. Methods 10, 1139–1140 (2013).

    Article  CAS  Google Scholar 

  226. Mailer, R. K. W., Gisterå, A., Polyzos, K. A., Ketelhuth, D. F. J. & Hansson, G. K. Hypercholesterolemia enhances T cell receptor signaling and increases the regulatory T cell population. Sci. Rep. 7, 15655 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Pollock, A. H. et al. Prolonged intake of dietary lipids alters membrane structure and T cell responses in LDLr−/− mice. J. Immunol. 196, 3993–4002 (2016).

    Article  CAS  PubMed  Google Scholar 

  228. Brown, E. M., Kenny, D. J. & Xavier, R. J. Gut microbiota regulation of T cells during inflammation and autoimmunity. Annu. Rev. Immunol. 37, 599–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Lee, N. & Kim, W.-U. Microbiota in T-cell homeostasis and inflammatory diseases. Exp. Mol. Med. 49, e340–e340 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Komaroff, A. L. The microbiome and risk for atherosclerosis. JAMA 319, 2381–2382 (2018).

    Article  PubMed  Google Scholar 

  231. Barrington, W. T. & Lusis, A. J. Association between the gut microbiome and atherosclerosis. Nat. Rev. Cardiol. 14, 699–700 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  CAS  PubMed  Google Scholar 

  233. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14, 395–398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many features. Cell 165, 780–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Cohen, M. et al. Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175, 1031–1044 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Kim, K. et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ. Res. 123, 1127–1142 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Lukowski, S. W. et al. Single-cell transcriptional profiling of aortic endothelium identifies a hierarchy from endovascular progenitors to differentiated cells. Cell Rep. 27, 2748–2758 (2019).

    Article  CAS  PubMed  Google Scholar 

  247. Kalluri, A. S. et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation 140, 147–163 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work is funded by The National Institutes of Health, HL136275, HL140976, HL145241, HL146134, HL148094 to K.L., an overseas research fellowship from the Japan Society for the Promotion of Science to R.S., and a postdoctoral fellowship from the German government (DFG) to H.W.

Author information

Authors and Affiliations

Authors

Contributions

R.S. wrote the article. All authors researched data for the article, made substantial contributions to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Klaus Ley.

Ethics declarations

Competing interests

K.L. is a founder of Atherovax. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Major histocompatibility complex

(MHC). Family of molecules that present antigen peptides to T cells. MHC class I molecules present peptides to CD8+ T cells and MHC class II molecules to CD4+ T cells. In humans, MHC molecules are very diverse (thousands of known alleles), but some alleles are more common (~10–20%) in some populations.

T cell receptor

(TCR). The TCR is a heterodimer that consists of either αβ or γδ chains, and expression of each heterodimer is mutually exclusive on the same cell. TCR signalling proceeds through transmembrane and intracellular CD3 subunits associated with the TCR. TCRs are highly polymorphic through recombination of V and J (and in some cases D) segments and through template-free nucleotide addition.

Co-stimulatory molecules

Co-stimulatory molecules are cell surface receptors that are ligated when the T cell receptor in T cells engages the major histocompatibility complex (MHC)–peptide complex in antigen-presenting cells. The nature of the co-stimulatory molecules determines the outcome of antigen presentation.

TCR sequencing

Technique that uses specific primers to identify the V, D and J segments used in each α, β, γ and δ subunit. The assembly of short reads and specialized reconstruction software such as TRACER allow the reconstruction of the entire T cell receptor (TCR) sequence, often of paired α and β or γ and δ chains.

MHC tetramer

Reagent used to analyse antigen-specific T cells. Constructed from four recombinant truncated major histocompatibility complex (MHC) class I or MHC class II molecules with the antigenic peptide naturally (non-covalently) or covalently bound and tetramerized by streptavidin. The streptavidin can be labelled by fluorochromes for detection with flow cytometry (Fig. 3b).

CD4+ effector memory T cells

A type of antigen-experienced CD4+ T cell that has effector functions but also forms memory (recall response after restimulation).

T cell exhaustion

Progressive loss of T cell functions under chronic antigen stimulation, for example, as occurs in cancer or persistent viral infections. Exhaustion can result in the depletion of the responding cells.

Innate lymphoid cells

Cells of the innate immune system with similarity to T helper cells in the expression of key transcription factors and effector molecules but that lack antigen-specific receptors characteristic of the adaptive immune system.

Necrotic core

The necrotic core of atherosclerotic lesions is composed of cholesterol crystals, debris of dead cells such as smooth muscle cells, foam cells and macrophages, and calcium particles. Large necrotic cores are associated with vulnerable plaques.

Central memory T cells

A type of antigen-experienced CD4+ T cells that has no effector functions but forms memory and is able to recirculate to secondary lymphoid organs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saigusa, R., Winkels, H. & Ley, K. T cell subsets and functions in atherosclerosis. Nat Rev Cardiol 17, 387–401 (2020). https://doi.org/10.1038/s41569-020-0352-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-0352-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing