Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced statistical sampling reveals microscopic complexity in the talin mechanosensor folding energy landscape

Abstract

Statistical mechanics can describe the major conformational ensembles determining the equilibrium free-energy landscape of a folding protein. The challenge is to capture the full repertoire of low-occurrence conformations separated by high kinetic barriers that define complex landscapes. Computationally, enhanced sampling methods accelerate the exploration of molecular rare events. However, accessing the entire protein’s conformational space in equilibrium experiments requires technological developments to enable extended observation times. We used single-molecule magnetic tweezers to capture over a million individual transitions as a single talin protein unfolds and refolds under force in equilibrium. When observed at classically probed timescales, talin folds in an apparently uncomplicated two-state manner. As the sampling time extends from minutes to days, the underlying energy landscape exhibits gradually larger signatures of complexity, involving a finite number of well-defined rare conformations. Fluctuation analysis allows us to propose plausible structures of each low-probability conformational state. The physiological relevance of each distinct conformation can be connected to the binding of the cytoskeletal protein vinculin, suggesting an extra layer of complexity in talin-mediated mechanotransduction. More generally, our experiments directly test the fundamental notion that equilibrium dynamics depend on the observation timescale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enhanced experimental sampling of R3IVVI’s conformational space reveals low-probability states.
Fig. 2: Mechanical force rescues R3IVVI from the rare, low-probability states by bringing it back to its native folding dynamics.
Fig. 3: A proline switch regulates the mechanical response of talin R3IVVI (state (ii)).
Fig. 4: Fluctuation analysis of R3IVVI dynamics fingerprints its wide conformational repertoire, enabling to suggest potential compatible protein structures defining each rare state.
Fig. 5: Conformational space of the talin R3IVVI domain represented as a kinetic network measured at F0.5.
Fig. 6: Probing full-length vinculin’s ability to bind the rare states of R3IVVI.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code is available from the corresponding authors upon reasonable request.

References

  1. Englander, S. W. & Mayne, L. The nature of protein folding pathways. Proc. Natl Acad. Sci. USA 111, 15873–15880 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Moore, P. B., Hendrickson, W. A., Henderson, R. & Brunger, A. T. The protein-folding problem: not yet solved. Science 375, 507 (2022).

    Article  PubMed  ADS  Google Scholar 

  4. Lazaridis, T. & Karplus, M. ‘New view’ of protein folding reconciled with the old through multiple unfolding simulations. Science 278, 1928–1931 (1997).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Dill, K. A. & Chan, H. S. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167–195 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Onuchic, J. N., Nymeyer, H., Garcia, A. E., Chahine, J. & Socci, N. D. The energy landscape theory of protein folding: insights into folding mechanisms and scenarios. Adv. Protein Chem. 53, 87–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Onuchic, J. N. & Wolynes, P. G. Theory of protein folding. Curr. Opin. Struct. Biol. 14, 70–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Karplus, M. Behind the folding funnel diagram. Nat. Chem. Biol. 7, 401–404 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Ferreiro, D. U., Komives, E. A. & Wolynes, P. G. Frustration in biomolecules. Q. Rev. Biophys. 47, 285–363 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tzul, F. O., Vasilchuk, D. & Makhatadze, G. I. Evidence for the principle of minimal frustration in the evolution of protein folding landscapes. Proc. Natl Acad. Sci. USA 114, E1627–E1632 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Chen, M. et al. Surveying biomolecular frustration at atomic resolution. Nat. Commun. 11, 5944 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Lindorff-Larsen, K., Piana, S., Dror, R. O. & Shaw, D. E. How fast-folding proteins fold. Science 334, 517–520 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Zheng, W. & Best, R. B. Reduction of all-atom protein folding dynamics to one-dimensional diffusion. J. Phys. Chem. B 119, 15247–15255 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neupane, K., Manuel, A. P. & Woodside, M. T. Protein folding trajectories can be described quantitatively by one-dimensional diffusion over measured energy landscapes. Nat. Phys. 12, 700–703 (2016).

    Article  CAS  Google Scholar 

  17. Petrosyan, R., Narayan, A. & Woodside, M. T. Single-molecule force spectroscopy of protein folding. J. Mol. Biol. 433, 167207 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Cecconi, C., Shank, E. A., Bustamante, C. & Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Shank, E. A., Cecconi, C., Dill, J. W., Marqusee, S. & Bustamante, C. The folding cooperativity of a protein is controlled by its chain topology. Nature 465, 637–640 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Gebhardt, J. C., Bornschlogl, T. & Rief, M. Full distance-resolved folding energy landscape of one single protein molecule. Proc. Natl Acad. Sci. USA 107, 2013–2018 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Rognoni, L., Most, T., Zoldak, G. & Rief, M. Force-dependent isomerization kinetics of a highly conserved proline switch modulates the mechanosensing region of filamin. Proc. Natl Acad. Sci. USA 111, 5568–5573 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Heidarsson, P. O. et al. Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1. Proc. Natl Acad. Sci. USA 111, 13069–13074 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Stigler, J., Ziegler, F., Gieseke, A., Gebhardt, J. C. & Rief, M. The complex folding network of single calmodulin molecules. Science 334, 512–516 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Lof, A. et al. Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. Proc. Natl Acad. Sci. USA 116, 18798–18807 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  25. Sen Mojumdar, S. et al. Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories. Nat. Commun. 8, 1881 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  26. Yu, H. et al. Direct observation of multiple misfolding pathways in a single prion protein molecule. Proc. Natl Acad. Sci. USA 109, 5283–5288 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Rico-Pasto, M., Alemany, A. & Ritort, F. Force-dependent folding kinetics of single molecules with multiple intermediates and pathways. J. Phys. Chem. Lett. 13, 1025–1032 (2022).

  28. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Faradjian, A. K. & Elber, R. Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 120, 10880–10889 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999).

    Article  CAS  ADS  Google Scholar 

  31. Popa, I. et al. A HaloTag anchored ruler for week-long studies of protein dynamics. J. Am. Chem. Soc. 138, 10546–10553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Greenleaf, W. J., Woodside, M. T., Abbondanzieri, E. A. & Block, S. M. Passive all-optical force clamp for high-resolution laser trapping. Phys. Rev. Lett. 95, 208102 (2005).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  33. Neupane, K. et al. Direct observation of transition paths during the folding of proteins and nucleic acids. Science 352, 239–242 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Goult, B. T., Yan, J. & Schwartz, M. A. Talin as a mechanosensitive signaling hub. J. Cell Biol. 217, 3776–3784 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao, M. et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tapia-Rojo, R., Alonso-Caballero, A. & Fernandez, J. M. Talin folding as the tuning fork of cellular mechanotransduction. Proc. Natl Acad. Sci. USA 117, 21346–21353 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Stannard, A. et al. Molecular fluctuations as a ruler of force-induced protein conformations. Nano Lett. 21, 2953–2961 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Valle-Orero, J. et al. Mechanical deformation accelerates protein ageing. Angew. Chem. Int. Ed. 56, 9741–9746 (2017).

    Article  CAS  Google Scholar 

  40. Beedle, A. E., Lynham, S. & Garcia-Manyes, S. Protein S-sulfenylation is a fleeting molecular switch that regulates non-enzymatic oxidative folding. Nat. Commun. 7, 12490 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Zosel, F., Mercadante, D., Nettels, D. & Schuler, B. A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction. Nat. Commun. 9, 3332 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  42. Serrano, A. L., Tucker, M. J. & Gai, F. Direct assessment of the α-helix nucleation time. J. Phys. Chem. B 115, 7472–7478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, Y. et al. Ultrafast folding of α3D: a de novo designed three-helix bundle protein. Proc. Natl Acad. Sci. USA 100, 15486–15491 (2003).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Williams, S. et al. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35, 691–697 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Munoz, V. & Cerminara, M. When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches. Biochem. J. 473, 2545–2559 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Guo, Z. & Thirumalai, D. Kinetics and thermodynamics of folding of a de novo designed four-helix bundle protein. J. Mol. Biol. 263, 323–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Tapia-Rojo, R., Alonso-Caballero, A. & Fernandez, J. M. Direct observation of a coil-to-helix contraction triggered by vinculin binding to talin. Sci. Adv. 6, eaaz4707 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  49. Yao, M. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  50. Baldwin, R. L. The nature of protein folding pathways: the classical versus the new view. J. Biomol. NMR 5, 103–109 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Rico-Pasto, M., Zaltron, A., Davis, S. J., Frutos, S. & Ritort, F. Molten globule–like transition state of protein barnase measured with calorimetric force spectroscopy. Proc. Natl Acad. Sci. USA 119, e2112382119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Austen, K. et al. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat. Cell Biol. 17, 1597–1606 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hakonardottir, G. K. et al. In vivo quantitative analysis of talin turnover in response to force. Mol. Biol. Cell 26, 4149–4162 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oakes, P. W., Beckham, Y., Stricker, J. & Gardel, M. L. Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. J. Cell Biol. 196, 363–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Broussard, J. A. et al. Automated analysis of cell-matrix adhesions in 2D and 3D environments. Sci. Rep. 5, 8124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Elosegui-Artola, A., Trepat, X. & Roca-Cusachs, P. Control of mechanotransduction by molecular clutch dynamics. Trends Cell Biol. 28, 356–367 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Geertsma, E. R., & Dutzler, R. A versatile and efficient high-throughput cloning tool for structural biology. Biochemistry 50, 3272–3278 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Boujemaa-Paterski, R. et al. Talin-activated vinculin interacts with branched actin networks to initiate bundles. Elife 9, e53990 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Francis Crick Institute that receives its core funding from Cancer Research UK (FC001002), the UK Medical Research Council (FC001002) and the Wellcome Trust (FC001002). R.T.-R. is the recipient of a King’s Prize Fellowship. O.M. was funded by the Swiss National Foundation grant (310030_207453). This work was supported by the European Commission (Mechanocontrol, grant agreement 731957BBSRC), BBSRC sLoLa (BB/V003518/1), Leverhulme Trust Research Leadership Award (RL-2016-015), Wellcome Trust Investigator Award (212218/Z/18/Z) and Royal Society Wolfson Fellowship (RSWF/R3/183006), to S.G.-M.

Author information

Authors and Affiliations

Authors

Contributions

R.T.-R., M.M. and S.G.-M. designed the research. R.T.-R. and M.M. conducted the single-molecule mechanical experiments and analysed the data. S.B. and J.W. expressed and purified the protein constructs. R.B.-P. and O.M. expressed and purified the full-length vinculin. R.T.-R., M.M. and S.G.-M. wrote the paper. All the authors contributed to revising and editing the manuscript.

Corresponding authors

Correspondence to Rafael Tapia-Rojo, Marc Mora or Sergi Garcia-Manyes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Gallery of selected magnetic tweezers recordings of R3IVVI at F0.5.

Each protein spontaneously visits the different identified states (i-vi), highlighted in the insets. The recordings are smoothed with a 101-points Savitzky-Golay algorithm, and unedited (no drift correction). The occasional spikes correspond to floating debris that interferes with the image analysis of the reference or the magnetic bead, but do not affect the intrinsic folding dynamics of the protein.

Extended Data Fig. 2 Gallery of magnetic tweezers recordings showing that a high force pulse rescues R3IVVI from each trapped state back to its native folding dynamics.

State (iii) could not be probed, as it is too short-lived to be rescued with force.

Extended Data Fig. 3 Force dependency of R3IVVI with Pro881 in the trans state (ii).

(A) Dynamics of R3IVVI at F0.5 undergoing a spontaneous cis-trans isomerization of P881. The trans-state is probed at three different forces, showing two-state dynamics with a lower mechanical stability and faster folding/unfolding kinetics. After a few seconds, the cis-state is spontaneously recovered, and R3IVVI goes back to its native folding dynamics. (B) Population of the folded form in the cis-state (grey) and trans-state (red). Cis-trans isomerization of Pro881 shifts the mechanical stability of R3IVVI by ~1 pN.

Extended Data Fig. 4 Force dependency of state (iv).

R3IVVI spontaneously falls into state (iv), characterized by a shorter end-to-end extension (~3 nm shorter than the unfolded state). Exploring forces between 6 and 10 pN shows that this state lacks any internal dynamics (inset).

Extended Data Fig. 5 Force dependency of state (v).

(A) Magnetic tweezers recording of R3IVVI spontaneously falling into state (v). Subsequently, the dynamics of state (v) are measured between 4 pN and 11 pN, allowing one to monitor the relative population of the three conformations. (B) Detail of the recording in (A), which shows the three conformations, L1, L2, and L3. (C) Relative population of conformations L1, L2, and L3 as a function of force. Compared to the canonical native folding dynamics of R3IVVI (i) which exhibits a very sharp force dependency, state (v) shows dynamic transitions between 5 pN and 11 pN.

Extended Data Fig. 6 Force dependency of state (vi).

(A) Magnetic tweezers recording of R3IVVI spontaneously falling into state (vi). Subsequently, the dynamics of state (vi) are measured between 4 pN and 12 pN, allowing us to monitor the relative population of the three conformations. (B) Detail of the recording in (A), which shows the transitions between conformations M1 and M2. (C) Relative population of conformations, M1 and M2, as a function of force.

Extended Data Fig. 7 Unedited 58 hours-long recording of a single protein L at 7.4 pN.

Protein L transitions in equilibrium between the folded and unfolded conformations in a two-state manner, without showing any off-pathway state.

Extended Data Fig. 8 The native (un)folding dynamics in state (i) is reminiscent of a two-state behaviour with our instrumental time resolution.

(A) Raw magnetic tweezers recording showing native unfolding and refolding transitions within state (i) (squared regions). (B) Detail of a native unfolding (left) and refolding (right) transition path, sampled at ~1,500 Hz. (C) Histogram of the trajectory of the reference bead after filtering low-frequency components arising from local drift (blue line). Being firmly attached to the surface, the spread in the vertical position of the reference bead arises mostly due to artifacts in the image analysis algorithm that influence the experimental estimation of the molecular extension. The data are well-fit by a Gaussian (black dotted line) with σ=0.85nm, which we use as the point-spread function to reconstruct the free energy landscape following a deconvolution procedure. (D) Free energy landscape of talin R3IVVI in state (i) at F0.5. The free energy landscape was reconstructed from >10,000 native (un)folding transitions following a deconvolution procedure (Jansson algorithm, Woodside et al., Science, 2006) using a point-spread function estimated from the trajectory of the reference bead (panel C). The dynamics within state (i) are two-state, as the landscape displays two free energy basins with a single free energy barrier of ~4kT separating them.

Extended Data Table 1 Conformational properties of the different configurational states of the talin R3IVVI domain
Extended Data Table 2 Kinetic analysis of average transition times between the different conformations

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia-Rojo, R., Mora, M., Board, S. et al. Enhanced statistical sampling reveals microscopic complexity in the talin mechanosensor folding energy landscape. Nat. Phys. 19, 52–60 (2023). https://doi.org/10.1038/s41567-022-01808-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-022-01808-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing