Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes

Abstract

Electroluminescence efficiencies of metal halide perovskite nanocrystals (PNCs) are limited by a lack of material strategies that can both suppress the formation of defects and enhance the charge carrier confinement. Here we report a one-dopant alloying strategy that generates smaller, monodisperse colloidal particles (confining electrons and holes, and boosting radiative recombination) with fewer surface defects (reducing non-radiative recombination). Doping of guanidinium into formamidinium lead bromide PNCs yields limited bulk solubility while creating an entropy-stabilized phase in the PNCs and leading to smaller PNCs with more carrier confinement. The extra guanidinium segregates to the surface and stabilizes the undercoordinated sites. Furthermore, a surface-stabilizing 1,3,5-tris(bromomethyl)-2,4,6-triethylbenzene was applied as a bromide vacancy healing agent. The result is highly efficient PNC-based light-emitting diodes that have current efficiency of 108 cd A−1 (external quantum efficiency of 23.4%), which rises to 205 cd A−1 (external quantum efficiency of 45.5%) with a hemispherical lens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of FA1–xGAxPbBr3 PNCs.
Fig. 2: Structural and photophysical effects of GA on FA1–xGAxPbBr3 PNCs.
Fig. 3: Defect analysis of FA1–xGAxPbBr3 PNCs.
Fig. 4: Characteristics of PeLEDs based on FA1–xGAxPbBr3 PNCs.
Fig. 5: Characteristics of PeLEDs with a TBTB interlayer.
Fig. 6: Device lifetime of PeLEDs.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  ADS  Google Scholar 

  2. Kim, Y.-H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).

    Article  Google Scholar 

  3. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  ADS  Google Scholar 

  4. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  ADS  Google Scholar 

  5. Schmidt, L. C. et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 136, 850–853 (2014).

    Article  Google Scholar 

  6. Kim, Y.-H., Cho, H. & Lee, T.-W. Metal halide perovskite light emitters. Proc. Natl Acad. Sci. USA 113, 11694–11702 (2016).

    Article  ADS  Google Scholar 

  7. Kim, Y.-H., Kim, J. S. & Lee, T.-W. Strategies to improve luminescence efficiency of metal‐halide perovskites and light‐emitting diodes. Adv. Mater. 31, 1804595 (2019).

    Article  Google Scholar 

  8. Koscher, B. A., Swabeck, J. K., Bronstein, N. D. & Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 139, 6566–6569 (2017).

    Article  Google Scholar 

  9. De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016).

    Article  Google Scholar 

  10. Wang, H.-C. et al. High-performance CsPb1−xSnxBr3 perovskite quantum dots for light-emitting diodes. Angew. Chem. Int. Ed. 129, 13838–13842 (2017).

    Article  Google Scholar 

  11. Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).

    Article  ADS  Google Scholar 

  12. Song, J. et al. Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 30, 1805409 (2018).

    Article  Google Scholar 

  13. Park, M.-H. et al. Boosting efficiency in polycrystalline metal halide perovskite light-emitting diodes. ACS Energy Lett. 4, 1134–1149 (2019).

    Article  Google Scholar 

  14. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  ADS  Google Scholar 

  15. Zhao, X. & Tan, Z.-K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photon. 14, 215–218 (2020).

    Article  ADS  Google Scholar 

  16. Yang, Y. et al. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. J. Phys. Chem. Lett. 6, 4688–4692 (2015).

    Article  Google Scholar 

  17. Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

    Article  ADS  Google Scholar 

  18. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  ADS  Google Scholar 

  19. Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article  ADS  Google Scholar 

  20. Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article  ADS  Google Scholar 

  21. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  ADS  Google Scholar 

  22. Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018).

    Article  ADS  Google Scholar 

  23. Zhao, L. et al. Electrical stress influences the efficiency of CH3NH3PbI3 perovskite light emitting devices. Adv. Mater. 29, 1605317 (2017).

    Article  Google Scholar 

  24. Chen, H. et al. High-efficiency formamidinium lead bromide perovskite nanocrystal-based light-emitting diodes fabricated via a surface defect self‐passivation strategy. Adv. Opt. Mater. 8, 1901390 (2020).

    Article  Google Scholar 

  25. Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    Article  ADS  Google Scholar 

  26. Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photon. 10, 53–59 (2016).

    Article  ADS  Google Scholar 

  27. Zheng, F., Tan, L. Z., Liu, S. & Rappe, A. M. Rashba spin–orbit coupling enhanced carrier lifetime in CH3NH3PbI3. Nano Lett. 15, 7794–7800 (2015).

    Article  ADS  Google Scholar 

  28. Rappe, A. M., Grinberg, I. & Spanier, J. E. Getting a charge out of hybrid perovskites. Proc. Natl Acad. Sci. USA 114, 7191–7193 (2017).

    Article  ADS  Google Scholar 

  29. Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  ADS  Google Scholar 

  30. Banerjee, A., Chakraborty, S. & Ahuja, R. Bromination-induced stability enhancement with a multivalley optical response signature in guanidinium [C(NH2)3]+-based hybrid perovskite solar cells. J. Mater. Chem. A 5, 18561–18568 (2017).

    Article  Google Scholar 

  31. Giorgi, G., Fujisawa, J.-I., Segawa, H. & Yamashita, K. Organic–inorganic hybrid lead iodide perovskite featuring zero dipole moment guanidinium cations: a theoretical analysis. J. Phys. Chem. C 119, 4694–4701 (2015).

    Article  Google Scholar 

  32. Jodlowski, A. D. et al. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2, 972–979 (2017).

    Article  ADS  Google Scholar 

  33. Marco, N. D. et al. Guanidinium: a route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells. Nano Lett. 16, 1009–1016 (2016).

    Article  ADS  Google Scholar 

  34. Kanno, S., Imamura, Y. & Hada, M. First-principles calculations of the rotational motion and hydrogen bond capability of large organic cations in hybrid perovskites. J. Phys. Chem. C 122, 15966–15972 (2018).

    Article  Google Scholar 

  35. Kakekhani, A., Katti, R. N. & Rappe, A. M. Water in hybrid perovskites: bulk MAPbI3 degradation via super-hydrous state. APL Mater. 7, 041112 (2019).

    Article  ADS  Google Scholar 

  36. Yi, C. et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016).

    Article  Google Scholar 

  37. Travis, W., Glover, E. N. K., Bronstein, H., Scanlon, D. O. & Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548–4556 (2016).

    Article  Google Scholar 

  38. Pham, N. D. et al. Tailoring crystal structure of FA0.83Cs0.17PbI3 perovskite through guanidinium doping for enhanced performance and tunable hysteresis of planar perovskite solar cells. Adv. Funct. Mater. 29, 1806479 (2019).

    Article  Google Scholar 

  39. Deng, Z., Kieslich, G., Bristowe, P. D., Cheetham, A. K. & Sun, S. Octahedral connectivity and its role in determining the phase stabilities and electronic structures of low-dimensional, perovskite-related iodoplumbates. APL Mater. 6, 114202 (2018).

    Article  ADS  Google Scholar 

  40. Kakekhani, A. et al. Nature of lone-pair–surface bonds and their scaling relations. Inorg. Chem. 57, 7222–7238 (2018).

    Article  Google Scholar 

  41. Kim, Y.-H. et al. Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano 11, 6586–6593 (2017).

    Article  Google Scholar 

  42. Contreras-García, J. et al. NCIPLOT: a program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 7, 625–632 (2011).

    Article  Google Scholar 

  43. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  44. Garrity, K. F., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).

    Article  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  46. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  47. Wang, Y. et al. Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 16, 1424–1429 (2014).

    Article  Google Scholar 

  48. Marzari, N., Vanderbilt, D., De Vita, A. & Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296–3299 (1999).

    Article  ADS  Google Scholar 

  49. Macrae, C. F. et al. Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 41, 466–470 (2008).

    Article  Google Scholar 

  50. Jeong, S.-H. et al. Characterizing the efficiency of perovskite solar cells and light-emitting diodes. Joule 4, 1206–1235 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2016R1A3B1908431). A.K., R.B.W., and A.M.R. acknowledge the support of the US Department of Energy, Office of Basic Energy Sciences, under grant no. DE-SC0019281 and also the computational support from NERSC of the DOE. P.T. acknowledges the scholarship from Chinese Scholarship Council (CSC). H.J.B. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 834431) and the Spanish Ministry of Economy and Competitiveness (MINECO) via the Unidad de Excelencia María de Maeztu CEX2019-000919-M and MAT2017-88821-R. A.S., S.N. and R.H.F. acknowledge support from the UKRI Global Challenge Research Fund project, SUNRISE (EP/P032591/1) and UKIERI projects. S.N. acknowledges funding and support from Royal Society-SERB Newton International Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.-H.K., S.K. and A.K. equally contributed to this work. Y.-H.K., S.K. and T.-W. L. initiated and designed the study. Y.-H.K. and S.K. performed experiments and analysed data. A.K., R.B.W. and P.T. performed the simulations, analysed data, helped understand the structures and mechanisms behind the great efficiency. J.P., D.-H.K. and S.H.J. helped to analyse the data. H.X. and B.H. performed and analysed magnetic field-dependent characteristics. Y.-H.L. and Y.-W.K. measured and analysed TEM. L.M.-S. and H.J.B. commented on the synthesis of nanocrystals. J.P. (KAIST) and S.Y. performed optical simulation of the devices. A.S., S.N. and R.H.F. performed the PLQE measurements and analysis. A.M.R. and T.-W.L. supervised the study. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Andrew M. Rappe or Tae-Woo Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Discussion and Tables 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YH., Kim, S., Kakekhani, A. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 15, 148–155 (2021). https://doi.org/10.1038/s41566-020-00732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-00732-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing