Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laser cavity-soliton microcombs

Abstract

Microcavity-based frequency combs, or ‘microcombs’1,2, have enabled many fundamental breakthroughs3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 through the discovery of temporal cavity-solitons. These self-localized waves, described by the Lugiato–Lefever equation22, are sustained by a background of radiation usually containing 95% of the total power23. Simple methods for their efficient generation and control are currently being investigated to finally establish microcombs as out-of-the-lab tools24. Here, we demonstrate microcomb laser cavity-solitons. Laser cavity-solitons are intrinsically background-free and have underpinned key breakthroughs in semiconductor lasers22,25,26,27,28. By merging their properties with the physics of multimode systems29, we provide a new paradigm for soliton generation and control in microcavities. We demonstrate 50-nm-wide bright soliton combs induced at average powers more than one order of magnitude lower than the Lugiato–Lefever soliton power threshold22, measuring a mode efficiency of 75% versus the theoretical limit of 5% for bright Lugiato–Lefever solitons23. Finally, we can tune the repetition rate by well over a megahertz without any active feedback.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of operation of microcomb laser cavity-soliton formation.
Fig. 2: Theoretical propagation of linear and solitary pulses.
Fig. 3: Temporal laser cavity-soliton measurement.
Fig. 4: Temporal laser cavity-soliton and Lugiato–Lefever cavity-soliton comparison.
Fig. 5: Control of the repetition rate of temporal laser cavity-solitons.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  2. Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  3. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  Google Scholar 

  4. Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun. 9, 1869 (2018).

    Article  ADS  Google Scholar 

  5. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  6. Pfeifle, J. et al. Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Phys. Rev. Lett. 114, 093902 (2015).

    Article  ADS  Google Scholar 

  7. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  Google Scholar 

  8. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  9. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  ADS  Google Scholar 

  10. Suh, M.-S. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    Article  ADS  Google Scholar 

  11. Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Article  ADS  Google Scholar 

  12. Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    Article  ADS  Google Scholar 

  13. Brasch, V. et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  14. Del’Haye, P. et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photon. 10, 516–520 (2016).

    Article  ADS  Google Scholar 

  15. Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).

    Article  ADS  Google Scholar 

  16. Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).

    Article  ADS  Google Scholar 

  17. Haelterman, M., Trillo, S. & Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992).

    Article  ADS  Google Scholar 

  18. Leo, F. et al. Temporal cavity-solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  19. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2013).

    Article  ADS  Google Scholar 

  20. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594–600 (2015).

    Article  ADS  Google Scholar 

  21. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    Article  ADS  Google Scholar 

  22. Lugiato, L. A., Prati, F. & Brambilla, M. Nonlinear Optical Systems (Cambridge Univ. Press, Cambridge, 2015).

    Book  Google Scholar 

  23. Xue, X., Wang, P. ‐H., Xuan, Y., Qi, M. & Weiner, A. M. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photon. Rev. 11, 1600276 (2017).

    Article  ADS  Google Scholar 

  24. Yao, B. et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature 558, 410–414 (2018).

    Article  ADS  Google Scholar 

  25. Tanguy, Y., Ackemann, T., Firth, W. J. & Jäger, R. Realization of a semiconductor-based cavity soliton laser. Phys. Rev. Lett. 100, 013907 (2008).

    Article  ADS  Google Scholar 

  26. Barland, S. et al. Cavity-solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).

    Article  ADS  Google Scholar 

  27. Genevet, P., Barland, S., Giudici, M. & Tredicce, J. R. Cavity soliton laser based on mutually coupled semiconductor microresonators. Phys. Rev. Lett. 101, 123905 (2008).

    Article  ADS  Google Scholar 

  28. Marconi, M., Javaloyes, J., Balle, S. & Giudici, M. How lasing localized structures evolve out of passive mode locking. Phys. Rev. Lett. 112, 223901 (2014).

    Article  ADS  Google Scholar 

  29. Wright, L. G., Christodoulides, D. N. & Wise, F. W. Spatio-temporal mode-locking in multimode fiber lasers. Science 358, 94–97 (2017).

    Article  ADS  Google Scholar 

  30. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84–92 (2012).

    Article  ADS  Google Scholar 

  31. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  32. Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).

    Article  Google Scholar 

  33. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photon. 11, 560–564 (2017).

    Article  Google Scholar 

  34. Miller, S. A. et al. Tunable frequency combs based on dual microring resonators. Opt. Express 23, 21527–21540 (2015).

    Article  ADS  Google Scholar 

  35. Gustave, F. et al. Observation of mode-locked spatial laser solitons. Phys. Rev. Lett. 118, 044102 (2017).

    Article  ADS  Google Scholar 

  36. Krupa, K. et al. Spatial beam self-cleaning in multimode fibres. Nat. Photon. 11, 237–241 (2017).

    Article  ADS  Google Scholar 

  37. Scroggie, A. J., Firth, W. J. & Oppo, G.-L. Cavity-soliton laser with frequency selective feedback. Phys. Rev. A 80, 013829 (2009).

    Article  ADS  Google Scholar 

  38. Peccianti, M. et al. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat. Commun. 3, 765 (2012).

    Article  Google Scholar 

  39. Wang, W. et al. Repetition rate multiplication pulsed laser source based on a microring resonator. ACS Photon. 4, 1677–1683 (2017).

    Article  Google Scholar 

  40. Bao, H. et al. Type-II micro-comb generation in a filter-driven four wave mixing laser. Photon. Res. 6, B67–B73 (2018).

    Article  Google Scholar 

  41. Andral, U. et al. Fiber laser mode locked through an evolutionary algorithm. Optica 2, 275–278 (2015).

    Article  Google Scholar 

  42. Haboucha, A., Leblond, H., Salhi, M., Komarov, A. & Sanchez, F. Analysis of soliton pattern formation in passively mode-locked fiber lasers. Phys. Rev. A 78, 043806 (2008).

    Article  ADS  Google Scholar 

  43. Del’Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nat. Photon. 3, 529–533 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the UK Quantum Technology Hub for Sensors and Metrology, EPSRC, under grant no. EP/M013294/1 and from INNOVATE UK, project ‘IOTA’ grant agreement no. EP/R043566/1. This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant no. 725046). A.P. acknowledges support from the People Programme (Marie Curie Actions) of the European Union’s FP7 Programme under REA grant agreement CHRONOS (327627). B.W. acknowledges support from the People Programme (Marie Curie Actions) of the European Union’s FP7 Programme under REA grant agreement INCIPIT (PIOF-GA-2013-625466). S.T.C. acknowledges support from the Research Grant Council of Hong Kong (GRF# 9042663). B.E.L. acknowledges support from the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB24030300). R.M. acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Strategic, Discovery and Acceleration Grants Schemes, by the MESI PSR-SIIRI Initiative in Quebec, by the Canada Research Chair Program, as well as additional support by the Government of the Russian Federation through the ITMO Fellowship and Professorship Program (grant no. 074-U 01) and by the 1000 Talents Sichuan Program.

Author information

Authors and Affiliations

Authors

Contributions

A.P., H.B. and M.P. developed the original concept. B.E.L. and S.T.C. designed and fabricated the integrated devices. H.B performed the experiments. A.P. developed the theoretical model. A.C., M.R., L.D.L., J.S.T.G., G.-L.O., D.J.M., R.M. and B.W. contributed to the development of the experiment, the numerical model and the data analysis. A.P., B.W., G.-L.O., D.J.M., R.M., H.B. and M.P. contributed to the writing of the manuscript. B.W., M.P. and A.P. supervised the research.

Corresponding author

Correspondence to Alessia Pasquazi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work, Supplementary Figures 1–8 and Supplementary Tables 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, H., Cooper, A., Rowley, M. et al. Laser cavity-soliton microcombs. Nat. Photonics 13, 384–389 (2019). https://doi.org/10.1038/s41566-019-0379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0379-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing