Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heteroepitaxial van der Waals semiconductor superlattices

Abstract

A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS2, WS2 and WSe2. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers n in our (MoS2/WS2)n SLs on optical excitations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ML-by-ML vdW heteroepitaxy of MoS2/WS2 SLs.
Fig. 2: Designer heteroepitaxy of vdW SLs with tunable periodicities.
Fig. 3: Heteroepitaxial evolution of in-plane crystalline textures of WSe2/WS2/MoS2 trilayers.
Fig. 4: Valley-polarized interlayer excitations in the type II MoS2/WS2 SLs.

Similar content being viewed by others

Data availability

Presented measurement data within this article and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ando, T., Fowler, B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article  CAS  Google Scholar 

  2. Anderson, D. A. & Apsley, N. Electronics: semiconductor superlattices. Nature 305, 668–669 (1983).

    Article  Google Scholar 

  3. Dingle, R., Störmer, H. L., Gossard, A. C. & Wiegmann, W. Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33, 665–667 (1978).

    Article  CAS  Google Scholar 

  4. Mimura, T., Hiyamizu, S., Fujii, T. & Nanbu, K. A new field-effect transistor with selectively doped GaAs/n-AlxGa1–xAs heterojunctions. Jpn J. Appl. Phys. 19, L225–L227 (1980).

    Article  CAS  Google Scholar 

  5. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  CAS  Google Scholar 

  6. Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  Google Scholar 

  7. Nakamura, S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281, 956–961 (1998).

    Article  CAS  Google Scholar 

  8. Khan, A., Balakrishnan, K. & Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photon. 2, 77–84 (2008).

    Article  CAS  Google Scholar 

  9. Abstreiter, G., Brugger, H., Wolf, T., Jorke, H. & Herzog, H. J. Strain-induced two-dimensional electron gas in selectively doped Si/SixGe1−x superlattices. Phys. Rev. Lett. 54, 2441–2444 (1985).

    Article  CAS  Google Scholar 

  10. Zur, A. & McGuill, T. C. Lattice match: an application to heteroepitaxy. J. Appl. Phys. 55, 378–386 (1984).

    Article  CAS  Google Scholar 

  11. Bauer, E. & van der Merwe, J. H. Structure and growth of crystalline superlattices: from monolayer to superlattice. Phys. Rev. B 33, 3657–3671 (1986).

    Article  CAS  Google Scholar 

  12. Bae, S. H. et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020).

    Article  CAS  Google Scholar 

  13. Mendez, E. E. & Bastard, G. Wannier–Stark ladders and Bloch oscillations in superlattices. Phys. Today 46, 34–42 (1993).

    Article  CAS  Google Scholar 

  14. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  15. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  16. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  CAS  Google Scholar 

  17. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  18. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  19. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  20. Yu, H., Wang, Y., Tong, Q., Xu, X. & Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).

    Article  Google Scholar 

  21. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  Google Scholar 

  22. Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  CAS  Google Scholar 

  23. Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 6, 7372 (2015).

    Article  CAS  Google Scholar 

  24. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  25. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  Google Scholar 

  26. Schmidt, P. et al. Nano-imaging of intersubband transitions in van der Waals quantum wells. Nat. Nanotechnol. 13, 1035–1041 (2018).

    Article  CAS  Google Scholar 

  27. Zultak, J. et al. Ultra-thin van der Waals crystals as semiconductor quantum wells. Nat. Commun. 11, 125 (2020).

    Article  CAS  Google Scholar 

  28. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article  CAS  Google Scholar 

  29. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    Article  CAS  Google Scholar 

  30. Kretinin, A. V. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 14, 3270–3276 (2014).

    Article  CAS  Google Scholar 

  31. Haigh, S. J. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    Article  CAS  Google Scholar 

  32. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article  Google Scholar 

  33. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  34. Jin, G. et al. Atomically thin three-dimensional membranes of van der Waals semiconductors by wafer-scale growth. Sci. Adv. 5, eaaw3180 (2019).

    Article  CAS  Google Scholar 

  35. Zhang, Z. & Lagally, M. G. Atomistic processes in the early stages of thin-film growth. Science 276, 377–383 (1997).

    Article  CAS  Google Scholar 

  36. Xie, S. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018).

    Article  CAS  Google Scholar 

  37. Lu, A.-Y. et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017).

    Article  CAS  Google Scholar 

  38. Lee, C.-S. et al. Programmed band gap modulation within van der Waals semiconductor monolayers by metalorganic vapor-phase epitaxy. Chem. Mater. 32, 5084–5090 (2020).

    Article  CAS  Google Scholar 

  39. Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

    Article  CAS  Google Scholar 

  40. Vaziri, S. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 5, eaax1325 (2019).

    Article  CAS  Google Scholar 

  41. Schutte, W. J., De Boer, J. L. & Jellinek, F. Crystal structures of tungsten disulfide and diselenide. J. Solid State Chem. 70, 207–209 (1987).

    Article  CAS  Google Scholar 

  42. Zou, X., Liu, Y. & Yakobson, B. I. Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles. Nano Lett. 13, 253–258 (2013).

    Article  CAS  Google Scholar 

  43. Kim, J. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 3, e1700518 (2017).

    Article  Google Scholar 

  44. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    Article  CAS  Google Scholar 

  45. Koma, A. Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201/202, 236–241 (1999).

    Article  CAS  Google Scholar 

  46. Lin, Y.-C. et al. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 12, 965–975 (2018).

    Article  CAS  Google Scholar 

  47. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS), Korea, under Project Code IBS-R014-A1.

Author information

Authors and Affiliations

Authors

Contributions

G.J., C.-S.L. and M.-H.J. conceived and designed the project. G.J., C.-S.L., S.-H.L. and M.Y.P. conducted the MOCVD growth experiments and material characterizations. O.F.N.O., D.-H.Y. and S.-Y.C. performed the TEM measurements and analysed the data. S.-Y.S., G.M. and S.Y.M. fabricated the devices and performed the optical measurements. H.A. performed the GI-WAXD measurements. S.C., C.H., J.L., J.K. and H.C. carried out the ultrafast laser spectroscopy. G.J., C.-S.L., S.C. and M.-H.J. wrote the paper. M.-H.J. supervised the project. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Moon-Ho Jo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Kian Ping Loh, Anlian Pan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note, Figs. 1–29, Tables 1–3 and references 1–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, G., Lee, CS., Okello, O.F.N. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 16, 1092–1098 (2021). https://doi.org/10.1038/s41565-021-00942-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00942-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing