Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide

Abstract

The spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin–photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons. Here, we demonstrate such an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared in the ground state with a fidelity of up to 96%. Subsequently, the system is used to implement a single-spin photonic switch, in which the spin state of the electron directs the flow of photons through the waveguide. The spin–photon interface may enable on-chip photon–photon gates, single-photon transistors and the efficient generation of a photonic cluster state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Resonant spectroscopy of a negatively charged quantum dot in a nanophotonic waveguide.
Fig. 2: Quantum dot spin preparation in a nanophotonic waveguide.
Fig. 3: Spin-controlled resonant transmission through the nanophotonic waveguide.
Fig. 4: Spin-controlled switching of the transmission.

Similar content being viewed by others

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  Google Scholar 

  2. Duan, L. M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    Article  Google Scholar 

  3. Van Meter, R., Ladd, T. D., Fowler, A. G. & Yamamoto, Y. Distributed quantum computation architecture using semiconductor nanophotonics. Int. J. Quantum Inf. 8, 295–323 (2010).

    Article  Google Scholar 

  4. Hacker, B., Welte, S., Rempe, G. & Ritter, S. A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016).

    Article  Google Scholar 

  5. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

    Article  Google Scholar 

  6. Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015).

    Article  Google Scholar 

  7. Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    Article  Google Scholar 

  8. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  Google Scholar 

  9. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    Article  Google Scholar 

  10. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    Article  Google Scholar 

  11. Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 4, 174–177 (2010).

    Google Scholar 

  12. Makhonin, M. et al. Waveguide coupled resonance fluorescence from on-chip quantum emitter. Nano Lett. 14, 6997–7002 (2014).

    Article  Google Scholar 

  13. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  Google Scholar 

  14. Kiršanské, G. et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys. Rev. B 96, 165306 (2017).

    Article  Google Scholar 

  15. Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015).

    Article  Google Scholar 

  16. Bennett, A. et al. A semiconductor photon-sorter. Nat. Nanotech. 11, 857–860 (2016).

    Article  Google Scholar 

  17. Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013).

    Article  Google Scholar 

  18. Söllner, I. et al. Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nanotech. 10, 775–778 (2015).

    Article  Google Scholar 

  19. Coles, R. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016).

    Article  Google Scholar 

  20. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  Google Scholar 

  21. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    Article  Google Scholar 

  22. Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  Google Scholar 

  23. Warburton, R. J. Single spins in self-assembled quantum dots. Nat. Mater. 12, 483–493 (2013).

    Article  Google Scholar 

  24. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nat. Photon. 4, 367–370 (2010).

    Article  Google Scholar 

  25. Stockill, R. et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun. 7, 12745 (2016).

    Article  Google Scholar 

  26. Pinotsi, D., Fallahi, P., Miguel-Sanchez, J. & Imamoglu, A. Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures. IEEE J. Quant. Electron 47, 1371–1374 (2011).

    Article  Google Scholar 

  27. Carter, S. G. Quantum control of a spin qubit coupled to a photonic crystal cavity. Nat. Photon. 7, 329–334 (2013).

    Article  Google Scholar 

  28. Sweeney, T. M. et al. Cavity-stimulated Raman emission from a single quantum dot spin. Nat. Photon. 8, 442–447 (2014).

    Google Scholar 

  29. Sun, S., Kim, H., Solomon, G. S. & Waks, E. A quantum phase switch between a single solid-state spin and a photon. Nat. Nanotech. 11, 539–544 (2016).

    Article  Google Scholar 

  30. Emary, C., Xu, X., Steel, D. G., Saikin, S. & Sham, L. J. Fast initialization of the spin state of an electron in a quantum dot in the Voigt configuration. Phys. Rev. Lett. 98, 047401 (2007).

    Article  Google Scholar 

  31. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007).

    Article  Google Scholar 

  32. Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577–1580 (2016).

    Article  Google Scholar 

  33. Mahmoodian, S., Lodahl, P. & Sørensen, A. S. Quantum networks with chiral-light–matter interaction in waveguides. Phys. Rev. Lett. 117, 240501 (2016).

    Article  Google Scholar 

  34. Dreiser, J. et al. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev. B 77, 075317 (2008).

    Article  Google Scholar 

  35. Löbl, M. C. et al. Narrow optical linewidths and spin pumping on charge-tunable, close-to-surface self-assembled quantum dots in an ultra-thin diode. Phys. Rev. B 96, 165440 (2017).

    Article  Google Scholar 

  36. Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013).

    Article  Google Scholar 

  37. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    Article  Google Scholar 

  38. Smith, J. M. et al. Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. Phys. Rev. Lett. 94, 197402 (2005).

    Article  Google Scholar 

  39. Kurzmann, A., Ludwig, A., Wieck, A. D., Lorke, A. & Geller, M. Auger recombination in self-assembled quantum dots: quenching and broadening of the charged exciton transition. Nano Lett. 16, 3367–3372 (2016).

    Article  Google Scholar 

  40. Kroner, M. et al. Resonant two-color high-resolution spectroscopy of a negatively charged exciton in a self-assembled quantum dot. Phys. Rev. B 78, 075429 (2008).

    Article  Google Scholar 

  41. Wüst, G. et al. Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot. Nat. Nanotech. 11, 885–889 (2016).

    Article  Google Scholar 

  42. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    Article  Google Scholar 

  43. Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).

    Article  Google Scholar 

  44. Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photon. 4, 477–483 (2010).

    Article  Google Scholar 

  45. Miller, D. A. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).

    Article  Google Scholar 

  46. Lodahl, P. Quantum-dot based photonic quantum networks. Quantum Sci. Technol. 3, 013001 (2018).

    Article  Google Scholar 

  47. Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    Article  Google Scholar 

  48. Kroner, M. et al. Optical detection of single-electron spin resonance in a quantum dot. Phys. Rev. Lett. 100, 156803 (2008).

    Article  Google Scholar 

  49. Hansom, J. et al. Environment-assisted quantum control of a solid-state spin via coherent dark states. Nat. Phys. 10, 725–730 (2014).

    Article  Google Scholar 

  50. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

    Article  Google Scholar 

  51. Éthier-Majcher, G. et al. Improving a solid-state qubit through an engineered mesoscopic environment. Phys. Rev. Lett. 119, 130503 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge N. J. Taba and C. L. Dreeßen for help during the initial stages of the measurements. We gratefully acknowledge financial support from the European Research Council (ERC Advanced Grant 'SCALE'), Innovation Fund Denmark (Quantum Innovation Center 'Qubiz') and the Danish Council for Independent Research. I.S., M.C.L. and R.J.W. acknowledge support from SNF (project 200020_156637) and NCCR QSIT. A.L. and A.D.W. gratefully acknowledge support of BMBF (Q.com-H 16KIS0109) and the DFG (TRR 160). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 747866 (EPPIC) and no. 753067 (OPHOCS).

Author information

Authors and Affiliations

Authors

Contributions

A.J., D.D., M.H.A. and T.S. carried out the optical experiment with input from I.S., R.J.W. and P.L. A.J., M.H.A. and S.M. performed the theory. M.C.L., I.S., A.L. and R.J.W. designed the heterostructure. R.S., A.L. and A.D.W. grew the wafer. C.P., T.P., S.S. and L.M. designed and fabricated the sample. A.J. and P.L. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Alisa Javadi or Peter Lodahl.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text and Supplementary Figures 1–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadi, A., Ding, D., Appel, M.H. et al. Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide. Nature Nanotech 13, 398–403 (2018). https://doi.org/10.1038/s41565-018-0091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0091-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing