Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’ has a pleomorphic life cycle

Abstract

Candidatus Methanoperedens’ are anaerobic methanotrophic (ANME) archaea with global importance to methane cycling. Here meta-omics and fluorescence in situ hybridization (FISH) were applied to characterize a bioreactor dominated by ‘Candidatus Methanoperedens nitroreducens’ performing anaerobic methane oxidation coupled to nitrate reduction. Unexpectedly, FISH revealed the stable co-existence of two ‘Ca. M. nitroreducens’ morphotypes: the archetypal coccobacilli microcolonies and previously unreported planktonic rods. Metagenomic analysis showed that the ‘Ca. M. nitroreducens’ morphotypes were genomically identical but had distinct gene expression profiles for proteins associated with carbon metabolism, motility and cell division. In addition, a third distinct phenotype was observed, with some coccobacilli ‘Ca. M. nitroreducens’ storing carbon as polyhydroxyalkanoates. The phenotypic variation of ‘Ca. M. nitroreducens’ probably aids their survival and dispersal in the face of sub-optimal environmental conditions. These findings further demonstrate the remarkable ability of members of the ‘Ca. Methanoperedens’ to adapt to their environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Composite FISH micrographs of abundant populations in the bioreactor biomass.
Fig. 2: Community profiles for the bioreactor community and filtration fractions.
Fig. 3: Differential expression of key pathways for ‘Ca. M. nitroreducens’.
Fig. 4: Schematic of the carbon and electron flow for the bioreactor community.
Fig. 5: Proposed model for the pleomorphic lifestyle of ‘Ca. M. nitroreducens’.

Similar content being viewed by others

Data availability

All sequencing data generated in this study are deposited in NCBI bioproject PRJNA836951. Accession numbers SAMN28229058–SAMN28229071 represent the metagenomic and metatranscriptomic reads and SAMN28180289–SAMN28180328 and SAMN28196132 represent the assembled MAGs and prophage.

References

  1. Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

    Article  CAS  Google Scholar 

  2. Chadwick, G. L. et al. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol. 20, e3001508 (2022).

    Article  Google Scholar 

  3. Haroon, M. F. et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567–570 (2013).

    Article  CAS  Google Scholar 

  4. Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).

    Article  CAS  Google Scholar 

  5. McGlynn, S. E. Energy metabolism during anaerobic methane oxidation in ANME Archaea. Microbes Environ. 32, 5–13 (2017).

    Article  Google Scholar 

  6. Beal, E. J., House, C. H. & Orphan, V. J. Manganese- and iron-dependent marine methane oxidation. Science 325, 184–187 (2009).

    Article  CAS  Google Scholar 

  7. McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015).

    Article  CAS  Google Scholar 

  8. Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015).

    Article  CAS  Google Scholar 

  9. Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 12, 1929–1939 (2018).

    Article  CAS  Google Scholar 

  10. Ettwig, K. F. et al. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl Acad. Sci. USA 113, 12792–12796 (2016).

    Article  CAS  Google Scholar 

  11. Leu, A. O. et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 14, 1030–1041 (2020).

    Article  CAS  Google Scholar 

  12. Leu, A. O. et al. Lateral gene transfer drives metabolic flexibility in the anaerobic methane-oxidizing archaeal family Methanoperedenaceae. mBio 11, e01325-20 (2020).

  13. Cai, C. et al. Response of the anaerobic methanotrophic archaeon Candidatus ‘Methanoperedens nitroreducens’ to the long-term ferrihydrite amendment. Front. Microbiol. 13, 799859 (2022).

  14. Arshad, A. et al. A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like Archaea. Front. Microbiol. 6, 1423 (2015).

    Article  Google Scholar 

  15. Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).

    Article  CAS  Google Scholar 

  16. Walker, D. J. F. et al. The archaellum of Methanospirillum hungatei is electrically conductive. mBio 10, e00579-19 (2019).

    Article  CAS  Google Scholar 

  17. Krukenberg, V. et al. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Environ. Microbiol. 20, 1651–1666 (2018).

    Article  CAS  Google Scholar 

  18. Schubert, C. J. et al. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno). FEMS Microbiol. Ecol. 76, 26–38 (2011).

    Article  CAS  Google Scholar 

  19. Stahl, D. A. & Amann, R. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M.) 205–248 (Wiley, 1991).

  20. Wallner, G., Amann, R. & Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143 (1993).

    Article  CAS  Google Scholar 

  21. Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome- assembled genome (MIMAG) of Bacteria and Archaea. Nat. Biotechnol. 36, 660 (2018).

    Article  CAS  Google Scholar 

  22. Vo, C. H., Goyal, N., Karimi, I. A. & Kraft, M. First observation of an acetate switch in a methanogenic autotroph (Methanococcus maripaludis S2). Microbiol. Insights 13, 1178636120945300 (2020).

    Article  Google Scholar 

  23. Cai, C. et al. Acetate production from anaerobic oxidation of methane via intracellular storage compounds. Environ. Sci. Technol. 53, 7371–7379 (2019).

    Article  CAS  Google Scholar 

  24. Ratcliff, W. C. & Denison, R. F. Bacterial persistence and bet hedging in Sinorhizobium meliloti. Commun. Integr. Biol. 4, 98–100 (2011).

    Article  CAS  Google Scholar 

  25. Ma, K., Schicho, R. N., Kelly, R. M. & Adams, M. W. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc. Natl Acad. Sci. USA 90, 5341–5344 (1993).

    Article  CAS  Google Scholar 

  26. Simon, G.-C. et al. Response of the anaerobic methanotroph “Candidatus Methanoperedens nitroreducens” to oxygen stress. Appl. Environ. Microbiol. 84, e01832-18 (2018).

    Google Scholar 

  27. van der Star, W. R. L. et al. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol. Bioeng. 101, 286–294 (2008).

    Article  Google Scholar 

  28. Duggin, I. G. et al. CetZ tubulin-like proteins control archaeal cell shape. Nature 519, 362–365 (2015).

    Article  CAS  Google Scholar 

  29. Schwarzer, S., Rodriguez-Franco, M., Oksanen, H. M. & Quax, T. E. F. Growth phase dependent cell shape of Haloarcula. Microorganisms 9, 231 (2021).

    Article  CAS  Google Scholar 

  30. Dang, H. Y. & Lovell, C. R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80, 91–138 (2016).

    Article  CAS  Google Scholar 

  31. Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

    Article  Google Scholar 

  32. Pires, D. P., Melo, L. D. R. & Azeredo, J. Understanding the complex phage–host interactions in biofilm communities. Annu. Rev. Virol. 8, 73–94 (2021).

  33. Canchaya, C., Proux, C., Fournous, G., Bruttin, A. & Brüssow, H. Prophage genomics. Microbiol. Mol. Biol. Rev. 67, 238–276 (2003).

    Article  CAS  Google Scholar 

  34. Zhang, X. et al. Polyhydroxyalkanoate-driven current generation via acetate by an anaerobic methanotrophic consortium. Water Res. 221, 118743 (2022).

    Article  CAS  Google Scholar 

  35. Knittel, K., Lösekann, T., Boetius, A., Kort, R. & Amann, R. Diversity and distribution of methanotrophic Archaea at cold seeps. Appl. Environ. Microbiol. 71, 467–479 (2005).

    Article  CAS  Google Scholar 

  36. Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D. & DeLong, E. F. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002).

    Article  CAS  Google Scholar 

  37. Orphan, V. J. et al. Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California. Chem. Geol. 205, 265–289 (2004).

    Article  CAS  Google Scholar 

  38. Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).

    Article  CAS  Google Scholar 

  39. Robinson, R. W. Life cycles in the methanogenic archaebacterium Methanosarcina mazei. Appl. Environ. Microbiol. 52, 17–27 (1986).

    Article  CAS  Google Scholar 

  40. Daims, H., Stoecker, K. & Wagner, M. in Molecular Microbial Ecology (eds Osborn, A. M. & Smith, C. J.) 213–239 (Taylor & Francis, 2005).

  41. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).

    Article  CAS  Google Scholar 

  42. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    Article  CAS  Google Scholar 

  43. Yilmaz, L. S., Parnerkar, S. & Noguera, D. R. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl. Environ. Microbiol. 77, 1118–1122 (2011).

    Article  CAS  Google Scholar 

  44. Stoecker, K., Dorninger, C., Daims, H. & Wagner, M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl. Environ. Microbiol. 76, 922–926 (2010).

    Article  CAS  Google Scholar 

  45. Fuchs, B. M., Glockner, F. O., Wulf, J. & Amann, R. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 66, 3603–3607 (2000).

    Article  CAS  Google Scholar 

  46. Manz, W., Amann, R., Ludwig, W., Wagner, M. & Schleifer, K.-H. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15, 593–600 (1992).

    Article  Google Scholar 

  47. Ostle, A. G. & Holt, J. G. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl. Environ. Microbiol. 44, 238–241 (1982).

    Article  CAS  Google Scholar 

  48. Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    Article  CAS  Google Scholar 

  49. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

  50. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  Google Scholar 

  51. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 1091 (2019).

    Article  CAS  Google Scholar 

  52. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  Google Scholar 

  53. Eren, A. M., Vineis, J. H., Morrison, H. G. & Sogin, M. L. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS ONE 8, e66643 (2013).

    Article  Google Scholar 

  54. Minoche, A. E., Dohm, J. C. & Himmelbauer, H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. 12, R112 (2011).

  55. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article  CAS  Google Scholar 

  56. Warren, R. L. et al. LINKS: scalable, alignment-free scaffolding of draft genomes with long reads. GigaScience 4, 35 (2015).

    Article  Google Scholar 

  57. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article  Google Scholar 

  58. Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352 (2015).

    Article  CAS  Google Scholar 

  59. Wick, R. R. et al. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol. 22, 266 (2021).

    Article  CAS  Google Scholar 

  60. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    Article  CAS  Google Scholar 

  61. Wick, R. R. & Holt, K. E. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Res. 8, 2138 (2021).

  62. Vaser, R. & Šikić, M. Time- and memory-efficient genome assembly with Raven. Nat. Comput. Sci. 1, 332–336 (2021).

    Article  Google Scholar 

  63. Wick, R. R. & Holt, K. E. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput. Biol. 18, e1009802 (2022).

    Article  CAS  Google Scholar 

  64. Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    Google Scholar 

  65. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  Google Scholar 

  66. Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2017).

    Article  Google Scholar 

  67. Heller, D. & Vingron, M. SVIM: structural variant identification using mapped long reads. Bioinformatics 35, 2907–2915 (2019).

    Article  CAS  Google Scholar 

  68. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    Article  CAS  Google Scholar 

  69. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article  CAS  Google Scholar 

  70. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007).

    Article  CAS  Google Scholar 

  71. Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).

    Article  Google Scholar 

  72. Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

    Article  CAS  Google Scholar 

  73. Haft, D. H. et al. TIGRFAMs and genome properties in 2013. Nucleic Acids Res. 41, D387–D395 (2013).

    Article  CAS  Google Scholar 

  74. Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).

    Article  CAS  Google Scholar 

  75. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article  CAS  Google Scholar 

  76. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).

    Article  CAS  Google Scholar 

  77. Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).

    Article  CAS  Google Scholar 

  78. Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–444 (1999).

    Article  CAS  Google Scholar 

  79. Schmid, M. C. et al. Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl. Environ. Microbiol. 71, 1677–1684 (2005).

    Article  CAS  Google Scholar 

  80. Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).

    Article  CAS  Google Scholar 

  81. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC; FT170100070, G.W.T.; FT190100211, S.J.M.), the US Department of Energy’s Office of Biological Environmental Research (DE-SC0016469, G.W.T.) and Queensland University of Technology (QUT). Z.Y. was supported by an Australian Research Council Laureate Fellowship (FL170100086).

Author information

Authors and Affiliations

Authors

Contributions

S.J.M., A.O.L. and G.W.T designed the experiments and wrote the manuscript. S.J.M. performed the single-cell visualization. A.O.L. and R.N. performed the bioinformatic analyses, and X.Z. operated the bioreactors. All authors contributed to the drafting of the manuscript.

Corresponding author

Correspondence to Simon J. McIlroy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Lisa Stein and Shawn McGlynn for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Bioreactor performance values.

a. Performance profile around the metatranscriptomic sampling point on Day 1682 b. Long-term transformation rates for NO3, NH4+ and CH4 (consumption) and N2 (production). c. Community profile of the bioreactor based on 16S rRNA amplicon sequencing. All taxa that are present in >1% in at least one sample are included and ordered by their abundance on Day 1682.

Extended Data Fig. 2 Summary of size fractionation of the bioreactor biomass.

a. Schematic of the workflow used for the filtration experiment. b.–d. Micrographs showing the success of the biomass filtration. b. Unfiltered biomass; c. Retentate fraction >5 µm; d. Filtrate fraction <5 µm. b.-d. Differential interference contrast (DIC) image of the biomass (top panels) and corresponding field of view with FISH (bottom panels). ‘Ca. M. nitroreducens’ cells appear green (AAA-FW-641 probe). Displayed representative FISH images are supported by the observation of 3 individual hybridisations for each of the size fractions. Scale bars represent 20 µm.

Extended Data Fig. 3 Analyses of the prophage in ‘Ca. M. nitroreducens’.

a. Genome map of the integrated prophage. b. Coverage depth profiles for i. filtrate (F) and ii. retentate (R) derived long Nanopore sequence reads mapped to the Methanoperedens-1 MAG. Only long reads mapping at Q20 were included in the analyses. c. Coverage depth profiles for i. F and ii. R derived Illumina short sequence reads mapped to the Methanoperedens-1 MAG. The average coverage ratio of phage to host (shaded in grey) is displayed for each fraction. Note that the supernatant for the filtrate fraction, likely containing phage, was discarded.

Extended Data Fig. 4 Expression of key pathways for abundant populations in the bioreactor.

a. Genes related to nitrogen metabolism; b. Genes involved in the reversible conversion of acetate to acetyl-CoA. TPM values for the catalytic subunit are given for abundant phylotypes. Values for F = Filtrate fraction; R = Retentate fraction. nar/nas = nitrate reductase; nir = nitrite reductase (nitric oxide forming); nrf = nitrite reductase (ammonia-forming); nor = nitric oxide reductase; nos = nitrous oxide reductase; hzs = hydrazine synthase; hzo = hydrazine oxidoreductase; pta = phosphate acetyltransferase; ack = acetate kinase; acs/acd = acetate-CoA ligase.

Extended Data Fig. 5 Micrographs showing polyhydroxyalkanoate (PHA) storage by coccobacilli ‘Ca. M. nitroreducens’ cells.

a. and b. ‘Ca. M. nitroreducens nitroreducens’ (FISH, AAA-FW-641); c. Negative FISH control (non-EUB); d. All bacteria (FISH, EUBmix). Images within each set are the same field of view. For all image sets: i. DIC images; ii. FISH (green); iii. pre-Nile Blue A stain control; iv. Nile Blue A positive lipid inclusions (appear red). a.ii., b.ii. and c.ii. are taken with the same image settings. All iii. and iv. images are taken with the same image settings. Scale bars represent 20 µm in all images. Representative image sets were selected for each probe set from >4 fields of view across 2 independent FISH hybridisations. In support of these observations, visual assessment of (>10 wells; 8 µl biomass per well) Nile Blue A stained biomass did not identify any PHA positive cells that did not exhibit the distinctive ‘Ca. M. nitroreducens’ coccobacilli morphotype. ‘Ca. M. nitroreducens’ was also the only population with high expression of the PHA synthase gene (phaC; Fig. 2b).

Supplementary information

Supplementary Information

Supplementary Text

Reporting Summary

Supplementary Data

Supplementary Tables 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McIlroy, S.J., Leu, A.O., Zhang, X. et al. Anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’ has a pleomorphic life cycle. Nat Microbiol 8, 321–331 (2023). https://doi.org/10.1038/s41564-022-01292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-022-01292-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing