Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamically tunable moiré exciton Rydberg states in a monolayer semiconductor on twisted bilayer graphene

Abstract

Moiré excitons are emergent optical excitations in two-dimensional semiconductors with moiré superlattice potentials. Although these excitations have been observed on several platforms, a system with dynamically tunable moiré potential to tailor their properties is yet to be realized. Here we present a continuously tunable moiré potential in monolayer WSe2, enabled by its proximity to twisted bilayer graphene (TBG) near the magic angle. By tuning local charge density via gating, TBG provides a spatially varying and dynamically tunable dielectric superlattice for modulation of monolayer WSe2 exciton wave functions. We observed emergent moiré exciton Rydberg branches with increased energy splitting following doping of TBG due to exciton wave function hybridization between bright and dark Rydberg states. In addition, emergent Rydberg states can probe strongly correlated states in TBG at the magic angle. Our study provides a new platform for engineering moiré excitons and optical accessibility to electronic states with small correlation gaps in TBG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Localized charge distribution in TBG and its periodic screening of adjacent WSe2.
Fig. 2: Moiré exciton Rydberg states in monolayer WSe2 on TBG.
Fig. 3: Tunable hybridization of exciton Rydberg states.
Fig. 4: Exciton Rydberg state sensing of strongly correlated states in magic-angle TBG.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data are available from the corresponding author on reasonable request.

Code availability

Codes used for data analysis in this study are also available from the corresponding author on reasonable request.

References

  1. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article  CAS  Google Scholar 

  2. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  3. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  CAS  Google Scholar 

  4. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Article  Google Scholar 

  5. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  CAS  Google Scholar 

  6. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  CAS  Google Scholar 

  7. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  Google Scholar 

  8. Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article  CAS  Google Scholar 

  9. Naik, M. H. et al. Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature 609, 52–57 (2022).

    Article  CAS  Google Scholar 

  10. Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    Article  CAS  Google Scholar 

  11. Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    Article  CAS  Google Scholar 

  12. Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).

    Article  Google Scholar 

  13. Chen, D. et al. Excitonic insulator in a heterojunction moiré superlattice. Nat. Phys. 18, 1171–1176 (2022).

    Article  CAS  Google Scholar 

  14. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  CAS  Google Scholar 

  15. Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).

    Article  CAS  Google Scholar 

  16. Zhang, Z. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 18, 1214–1220 (2022).

    Article  CAS  Google Scholar 

  17. Shabani, S. et al. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 17, 720–725 (2021).

    Article  CAS  Google Scholar 

  18. Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    Article  CAS  Google Scholar 

  19. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  CAS  Google Scholar 

  20. Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    Article  Google Scholar 

  21. He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    Article  CAS  Google Scholar 

  22. Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

    Article  CAS  Google Scholar 

  23. Utama, M. I. B. et al. A dielectric-defined lateral heterojunction in a monolayer semiconductor. Nat. Electron. 2, 60–65 (2019).

    Article  CAS  Google Scholar 

  24. Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).

    Article  CAS  Google Scholar 

  25. Yang, X.-C., Yu, H. & Yao, W. Chiral excitonics in monolayer semiconductors on patterned dielectrics. Phys. Rev. Lett. 128, 217402 (2022).

    Article  CAS  Google Scholar 

  26. Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    Article  CAS  Google Scholar 

  27. Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    Article  CAS  Google Scholar 

  28. Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).

    Article  CAS  Google Scholar 

  29. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

    Article  CAS  Google Scholar 

  30. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    Article  CAS  Google Scholar 

  31. Wagner, K. et al. Autoionization and dressing of excited excitons by free carriers in monolayer WSe2. Phys. Rev. Lett. 125, 267401 (2020).

    Article  CAS  Google Scholar 

  32. Lamouche, G. & Lépine, Y. Ground-state energy of an exciton in a quantum-dot superlattice grown on a terraced substrate. Phys. Rev. B 54, 4811–4819 (1996).

    Article  CAS  Google Scholar 

  33. Tkach, N. V., Makhanets, A. M. & Zegryae, G. G. Electrons, holes, and excitons in a superlattice composed of cylindrical quantum dots with extremely weak coupling between quasiparticles in neighboring layers of quantum dots. Semiconductors 36, 511–518 (2002).

    Article  CAS  Google Scholar 

  34. Suris, R. A. Wannier–Mott excitons in semiconductors with a superlattice. Semiconductors 49, 807–813 (2015).

    Article  CAS  Google Scholar 

  35. Stier, A. V. et al. Magnetooptics of exciton Rydberg states in a monolayer semiconductor. Phys. Rev. Lett. 120, 057405 (2018).

    Article  CAS  Google Scholar 

  36. Goryca, M. et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields. Nat. Commun. 10, 4172 (2019).

    Article  CAS  Google Scholar 

  37. Semina, M. A. & Suris, R. A. Localized excitons and trions in semiconductor nanosystems. Phys. Uspekhi 65, 111–130 (2022).

    Article  CAS  Google Scholar 

  38. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  CAS  Google Scholar 

  39. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  Google Scholar 

  40. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  41. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, eaav1910 (2019).

    Article  Google Scholar 

  42. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article  CAS  Google Scholar 

  43. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  CAS  Google Scholar 

  44. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  CAS  Google Scholar 

  45. Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).

    Article  CAS  Google Scholar 

  46. Lin, J.-X. et al. Spin-orbit–driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).

    Article  CAS  Google Scholar 

  47. Polski, R. et al. Hierarchy of symmetry breaking correlated phases in twisted bilayer graphene. Preprint at arXiv https://doi.org/10.48550/arxiv.2205.05225 (2022).

  48. Lian, B. et al. Twisted bilayer graphene. IV. Exact insulator ground states and phase diagram. Phys. Rev. B 103, 205414 (2021).

    Article  CAS  Google Scholar 

  49. Popert, A. et al. Optical sensing of fractional quantum Hall effect in graphene. Nano Lett. 22, 7363–7369 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. L. Li and H. Yu for helpful discussions. This work was supported mainly by the US Department of Energy Basic Energy Sciences under award no. DE-SC0018171 (to X.X., M.H. and J.C.). Sample fabrication was partially supported by the ARO MURI programme (grant no. W911NF-18-1-0431 to M.H.). Electrical transport measurement was partially supported by the US National Science Foundation through the UW Molecular Engineering Materials Center, a Materials Research Science and Engineering Center (no. DMR-1719797 to X.X. and M.Y.). STM/spectroscopy measurement is supported by the Center on Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0019443 (to A.P. and E.S.). Work at the University of Hong Kong is supported by the Research Grants Council of Hong Kong SAR (nos. AoE/P-701/20 and HKU SRFS2122-7S05 to W.Y. and H.Z.). W.Y. also acknowledges support by the New Cornerstone Science Foundation. K.W. and T.T. acknowledge support from JSPS KAKENHI (grant nos. 19H05790, 20H00354 and 21H05233). X.X. acknowledges support from the State of Washington-funded Clean Energy Institute and from the Boeing Distinguished Professorship in Physics.

Author information

Authors and Affiliations

Authors

Contributions

M.H. and J.C. performed transport and optical reflection measurements, under the supervision of X.X. and M.Y. M.H. fabricated samples. M.H., J.C., M.Y., W.Y. and X.X. analysed and interpreted results. H.Z. and W.Y. performed theoretical calculations. E.S. and A.P. performed STM measurements and analysed results. J.Y. synthesized and characterized bulk WSe2 crystals. T.T. and K.W. synthesized h-BN crystals. M.H., X.X., W.Y., J.C. and H.Z. wrote the paper with input from all authors. All authors discussed the results.

Corresponding authors

Correspondence to Wang Yao or Xiaodong Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Olga Kazakova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Figs. 1–11.

Source data

Source Data Fig. 1

Experimental data for Fig. 1.

Source Data Fig. 2

Experimental data for Fig. 2.

Source Data Fig. 3

Experimental data for Fig. 3.

Source Data Fig. 4

Experimental data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Cai, J., Zheng, H. et al. Dynamically tunable moiré exciton Rydberg states in a monolayer semiconductor on twisted bilayer graphene. Nat. Mater. 23, 224–229 (2024). https://doi.org/10.1038/s41563-023-01713-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01713-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing