Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ferrimagnetic spintronics

Abstract

Ferrimagnets composed of multiple and antiferromagnetically coupled magnetic elements have attracted much attention recently as a material platform for spintronics. They offer the combined advantages of both ferromagnets and antiferromagnets, namely the easy control and detection of their net magnetization by an external field, antiferromagnetic-like dynamics faster than ferromagnetic dynamics and the potential for high-density devices. This Review summarizes recent progress in ferrimagnetic spintronics, with particular attention to the most-promising functionalities of ferrimagnets, which include their spin transport, spin texture dynamics and all-optical switching.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different classes of long-range magnetic order.
Fig. 2: All-optical magnetization switching of GdFeCo with linearly polarized light.
Fig. 3: DW and skyrmion motion in ferrimagnets.
Fig. 4: Fast motion of ferrimagnetic DW at TA.
Fig. 5: Skyrmion Hall angle in ferrimagnets.
Fig. 6: Spin coherence length in a ferrimagnetic multilayer.

Similar content being viewed by others

References

  1. Néel, L. Antiferromagnetism and ferrimagnetism. Proc. Phys. Soc. A 65, 869 (1952).

    Article  Google Scholar 

  2. Dionne, G. F. A review of ferrites for microwave applications. Proc. IEEE 63, 777–789 (1975).

    Article  CAS  Google Scholar 

  3. Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).

    Article  Google Scholar 

  4. Chaudhari, P., Cuomo, J. J. & Gambino, R. J. Amorphous metallic films for magneto-optic applications. Appl. Phys. Lett. 42, 202 (1973).

    Google Scholar 

  5. Carey, R., Newman, D. M. & Thomas, B. W. J. Magneto-optic recording. J. Phys. D 28, 2207–2227 (1995).

    Article  CAS  Google Scholar 

  6. Hansen, P. et al. Magnetic and magneto‐optical properties of rare‐earth transition‐metal alloys containing Gd, Tb, Fe, Co. J. Appl. Phys. 66, 756 (1989).

    Article  CAS  Google Scholar 

  7. Tsunashima, S. Magneto-optical recording. J. Phys. D 34, R87–R102 (2001).

    Article  CAS  Google Scholar 

  8. Focus on antiferromagnetic spintronics. Nat. Phys. https://www.nature.com/collections/wplplmmvnt (2018).

  9. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  CAS  Google Scholar 

  10. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  CAS  Google Scholar 

  11. Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

    Article  CAS  Google Scholar 

  12. Mentink, J. H. et al. Ultrafast spin dynamics in multisublattice magnets. Phys. Rev. Lett. 108, 057202 (2012).

    Article  CAS  Google Scholar 

  13. Davies, C. S. et al. Pathways for single-shot all-optical switching of magnetization in ferrimagnets. Phys. Rev. Appl. 13, 024064 (2020).

    Article  CAS  Google Scholar 

  14. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666 (2012).

    Article  CAS  Google Scholar 

  15. Evans, R. F. L., Ostler, T. A., Chantrell, R. W., Radu, I. & Rasing, T. Ultrafast thermally induced magnetic switching in synthetic ferrimagnets. Appl. Phys. Lett. 104, 082410 (2014).

    Article  Google Scholar 

  16. Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13, 286–292 (2014).

    Article  CAS  Google Scholar 

  17. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  CAS  Google Scholar 

  18. Hennecke, M. et al. Angular momentum flow during ultrafast demagnetization of a ferrimagnet. Phys. Rev. Lett. 122, 157202 (2019).

    Article  CAS  Google Scholar 

  19. Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).

    Article  CAS  Google Scholar 

  20. Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    Article  CAS  Google Scholar 

  21. Siddiqui, S. A., Han, J., Finley, J. T., Ross, C. A. & Liu, L. Current-induced domain wall motion in a compensated ferrimagnet. Phys. Rev. Lett. 121, 057701 (2018).

    Article  CAS  Google Scholar 

  22. Bläsing, R. et al. Exchange coupling torque in ferrimagnetic Co/Gd bilayer maximized near angular momentum compensation temperature. Nat. Commun. 9, 4984 (2018).

    Article  Google Scholar 

  23. Avci, C. O. et al. Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019).

    Article  CAS  Google Scholar 

  24. Cai, K. et al. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3, 37–42 (2020).

    Article  CAS  Google Scholar 

  25. Ghosh, S. et al. Current-driven domain wall dynamics in ferrimagnetic nickel-doped Mn4N films: very large domain wall velocities and reversal of motion direction across the magnetic compensation point. Nano Lett. 21, 2580–2587 (2021).

    Article  CAS  Google Scholar 

  26. Kim, S. K., Lee, K.-J. & Tserkovnyak, Y. Self-focusing skyrmion racetracks in ferrimagnets. Phys. Rev. B 95, 140404(R) (2017).

    Article  Google Scholar 

  27. Hirata, Y. et al. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet. Nat. Nanotechnol. 14, 232–236 (2019).

    Article  CAS  Google Scholar 

  28. Oh, S.-H. et al. Coherent terahertz spin-wave emission associated with ferrimagnetic domain walls. Phys. Rev. B 96, 100407(R) (2017).

    Article  Google Scholar 

  29. Oh, S.-H. & Lee, K.-J. Ferrimagnetic domain wall motion induced by damping-like spin–orbit torque. J. Magn. 23, 196–200 (2018).

    Article  Google Scholar 

  30. Yu, J. et al. Long spin coherence length and bulk-like spin–orbit torque in ferrimagnetic multilayers. Nat. Mater. 18, 29–34 (2019).

    Article  CAS  Google Scholar 

  31. Lim, Y. et al. Dephasing of transverse spin current in ferrimagnetic alloys. Phys. Rev. B 103, 024443 (2021).

    Article  CAS  Google Scholar 

  32. Okuno, T. et al. Spin-transfer torques for domain wall motion in antiferromagnetically coupled ferrimagnets. Nat. Electron. 2, 389–393 (2019).

    Article  CAS  Google Scholar 

  33. Koopmans, B., Ruigrok, J. J. M., Dalla Longa, F. & de Jonge, W. J. M. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett. 95, 267207 (2005).

    Article  CAS  Google Scholar 

  34. Singh, N., Elliott, P., Dewhurst, J. K., Gross, E. K. U. & Sharma, S. Ab‐initio real‐time magnon dynamics in ferromagnetic and ferrimagnetic systems. Phys. Status Solidi B 257, 1900654 (2020).

    Article  CAS  Google Scholar 

  35. Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259–265 (2010).

    Article  CAS  Google Scholar 

  36. Wietstruck, M. et al. Hot-electron-driven enhancement of spin-lattice coupling in Gd and Tb 4f ferromagnets observed by femtosecond X-ray magnetic circular dichroism. Phys. Rev. Lett. 106, 127401 (2011).

    Article  Google Scholar 

  37. Radu, I. et al. Ultrafast and distinct spin dynamics in magnetic alloys. Spin 5, 1550004 (2015).

    Article  CAS  Google Scholar 

  38. Mentink, J. Magnetism on the Timescale of the Exchange Interaction: Explanations and Predictions. PhD thesis, Radboud Univ. (2012).

  39. Campbell, I. A. Indirect exchange for rare earths in metals. J. Phys. F 2, L47 (1972).

    Article  CAS  Google Scholar 

  40. Buschow, K. H. J. Intermetallic compounds of rare-earth and 3d transition metals. Rep. Prog. Phys. 40, 1179 (1977).

    Article  CAS  Google Scholar 

  41. Lang, J. K., Baer, Y. & Cox, P. A. Study of the 4f levels in rare-earth metals by high-energy spectroscopies. Phys. Rev. Lett. 42, 74 (1979).

    Article  CAS  Google Scholar 

  42. Bar’yakhtar, V. G. Phenomenological description of relaxation processes in magnetic materials. Sov. Phys. JETP 60, 863–867 (1984).

    Google Scholar 

  43. Bar’yakhtar, V. G. Crystal symmetry and the structure of the relaxation terms in the antiferromagnet dynamic equations of motion. Sov. Phys. JETP 67, 757 (1988).

    Google Scholar 

  44. Bar’yakhtar, V. G., Butrim, V. I. & Ivanov, B. A. Exchange relaxation as a mechanism of the ultrafast reorientation of spins in a two-sublattice ferrimagnet. JETP Lett. 98, 289–293 (2013).

    Article  Google Scholar 

  45. Wienholdt, S., Hinzke, D., Carva, K., Oppeneer, P. M. & Nowak, U. Orbital-resolved spin model for thermal magnetization switching in rare-earth-based ferrimagnets. Phys. Rev. B 88, 020406(R) (2013).

    Article  Google Scholar 

  46. Schellekens, A. J. & Koopmans, B. Microscopic model for ultrafast magnetization dynamics of multisublattice magnets. Phys. Rev. B 87, 020407(R) (2013).

    Article  Google Scholar 

  47. Barker, J. & Atxitia, U. A review of modelling in ferrimagnetic spintronics. J. Phys. Soc. Jpn 90, 081001 (2021).

    Article  Google Scholar 

  48. Lalieu, M. L. M., Peeters, M. J. G., Haenen, S. R. R., Lavrijsen, R. & Koopmans, B. Deterministic all-optical switching of synthetic ferrimagnets using single femtosecond laser pulses. Phys. Rev. B 96, 220411(R) (2017).

    Article  Google Scholar 

  49. Avilés-Félix, L. et al. Single-shot all-optical switching of magnetization in Tb/Co multilayer-based electrodes. Sci. Rep. 10, 5211 (2020).

    Article  Google Scholar 

  50. Khorsand, A. R. et al. Role of magnetic circular dichroism in all-optical magnetic recording. Phys. Rev. Lett. 108, 127205 (2012).

    Article  CAS  Google Scholar 

  51. Atxitia, U., Barker, J., Chantrell, R. W. & Chubykalo-Fesenko, O. Controlling the polarity of the transient ferromagneticlike state in ferrimagnets. Phys. Rev. B 89, 224421 (2014).

    Article  Google Scholar 

  52. Steil, D., Alebrand, S., Hassdenteufel, A., Cinchetti, M. & Aeschlimann, M. All-optical magnetization recording by tailoring optical excitation parameters. Phys. Rev. B 84, 224408 (2011).

    Article  Google Scholar 

  53. Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 3, e1603117 (2017).

    Article  Google Scholar 

  54. Finazzi, M. et al. Laser-induced magnetic nanostructures with tunable topological properties. Phys. Rev. Lett. 110, 177205 (2013).

    Article  CAS  Google Scholar 

  55. Banerjee, C. et al. Single pulse all-optical toggle switching of magnetization without gadolinium in the ferrimagnet Mn2RuxGa. Nat. Commun. 11, 4444 (2020).

    Article  CAS  Google Scholar 

  56. Davies, C. S. et al. Exchange-driven all-optical magnetic switching in compensated 3d ferrimagnets. Phys. Rev. Res. 2, 032044(R) (2020).

    Article  Google Scholar 

  57. Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–74 (2017).

    Article  CAS  Google Scholar 

  58. Wang, S. et al. Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo. Light Sci. Appl. 10, 8 (2021).

    Article  Google Scholar 

  59. El-Ghazaly, A. et al. Ultrafast magnetization switching in nanoscale magnetic dots. Appl. Phys. Lett. 114, 232407 (2019).

    Article  Google Scholar 

  60. Ivanov, B. A. & Sukstanskii, A. L. Nonlinear magnetization waves in ferrites. Sov. Phys. JETP 57, 214 (1983).

    Google Scholar 

  61. Chiolero, A. & Loss, D. Macroscopic quantum coherence in ferrimagnets. Phys. Rev. B 56, 738 (1997).

    Article  CAS  Google Scholar 

  62. Kimel, A. V. et al. Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5, 727–731 (2009).

    Article  CAS  Google Scholar 

  63. Binder, M. et al. Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Phys. Rev. B 74, 134404 (2006).

    Article  Google Scholar 

  64. Okuno, T. et al. Temperature dependence of magnetic resonance in ferrimagnetic GdFeCo alloys. Appl. Phys. Express 12, 093001 (2019).

    Article  CAS  Google Scholar 

  65. Kim, C. et al. Spin wave excitation with distinct handedness across compensation temperatures of ferrimagnets. Nat. Mater. 19, 980–985 (2020).

    Article  CAS  Google Scholar 

  66. Schryer, N. & Walker, L. The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974).

    Article  CAS  Google Scholar 

  67. Beach, G., Nistor, C., Knutson, C., Tsoi, M. & Erskine, J. Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nat. Mater. 4, 741–744 (2005).

    Article  CAS  Google Scholar 

  68. Mougin, A., Cormier, M., Adam, J. P., Metaxas, P. J. & Ferré, J. Domain wall mobility, stability and Walker breakdown in magnetic nanowires. Europhys. Lett. 78, 57007 (2007).

    Article  Google Scholar 

  69. Bar’yakhtar, V. G., Ivanov, B. A. & Chetkin, M. V. Dynamics of domain walls in weak ferromagnets. Sov. Phys. Usp. 28, 563–588 (1985).

    Article  Google Scholar 

  70. Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. A. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013).

    Article  Google Scholar 

  71. Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phenomenology of current-induced dynamics in antiferromagnets. Phys. Rev. Lett. 106, 107206 (2011).

    Article  Google Scholar 

  72. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article  Google Scholar 

  73. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  Google Scholar 

  74. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  75. Dzialoshinskii, I. E. Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957).

    Google Scholar 

  76. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  CAS  Google Scholar 

  77. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  CAS  Google Scholar 

  78. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  CAS  Google Scholar 

  79. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  CAS  Google Scholar 

  80. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article  CAS  Google Scholar 

  81. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    Article  CAS  Google Scholar 

  82. Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nat. Nanotechnol. 12, 1040–1044 (2017).

    Article  Google Scholar 

  83. Pollard, S. D. et al. Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy. Nat. Commun. 8, 14761 (2017).

    Article  Google Scholar 

  84. Büttner, F., Lemesh, I. & Beach, G. S. D. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci. Rep. 8, 4464 (2018).

    Article  Google Scholar 

  85. Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2016).

    Article  CAS  Google Scholar 

  86. Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2016).

    Article  Google Scholar 

  87. Barker, J. & Tretiakov, O. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).

    Article  Google Scholar 

  88. Zhang, X., Zhou, Y. & Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016).

    Article  CAS  Google Scholar 

  89. Woo, S. et al. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Nat. Commun. 9, 959 (2018).

    Article  Google Scholar 

  90. Kaiser, C., Panchula, A. F. & Parkin, S. S. P. Finite tunneling spin polarization at the compensation point of rare-earth-metal–transition-metal alloys. Phys. Rev. Lett. 95, 047202 (2005).

    Article  Google Scholar 

  91. Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Article  Google Scholar 

  92. Haney, P. M. & MacDonald, A. H. Current-induced torques due to compensated antiferromagnets. Phys. Rev. Lett. 100, 196801 (2008).

    Article  Google Scholar 

  93. Xu, Y., Wang, S. & Xia, K. Spin-transfer torques in antiferromagnetic metals from first principles. Phys. Rev. Lett. 100, 226602 (2008).

    Article  Google Scholar 

  94. Mishra, R. et al. Anomalous current-induced spin torques in ferrimagnets near compensation. Phys. Rev. Lett. 118, 167201 (2017).

    Article  Google Scholar 

  95. Finley, J. & Liu, L. Spin–orbit-torque efficiency in compensated ferrimagnetic cobalt-terbium alloys. Phys. Rev. Appl. 6, 054001 (2016).

    Article  Google Scholar 

  96. Roschewsky, N., Lambert, C.-H. & Salahuddin, S. Spin–orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo. Phys. Rev. B 96, 064406 (2017).

    Article  Google Scholar 

  97. Ueda, K., Mann, M., de Brouwer, P. W. P., Bono, D. & Beach, G. S. D. Temperature dependence of spin–orbit torques across the magnetic compensation point in a ferrimagnetic TbCo alloy film. Phys. Rev. B 96, 064410 (2017).

    Article  Google Scholar 

  98. Pham, T. H. et al. Thermal contribution to the spin–orbit torque in metallic-ferrimagnetic systems. Phys. Rev. Appl. 9, 064032 (2018).

    Article  CAS  Google Scholar 

  99. Hebler, B., Hassdenteufel, A., Reinhardt, P., Karl, H. & Albrecht, M. Ferrimagnetic Tb–Fe alloy thin films: composition and thickness dependence of magnetic properties and all-optical switching. Front. Mater. 3, 8 (2016).

    Article  Google Scholar 

  100. Je, S.-G. et al. Spin–orbit torque-induced switching in ferrimagnetic alloys: experiments and modeling. Appl. Phys. Lett. 112, 062401 (2018).

    Article  Google Scholar 

  101. Tatara, G., Kohno, H. & Shibata, J. Microscopic approach to current-driven domain wall dynamics. Phys. Rep. 468, 213–301 (2008).

    Article  Google Scholar 

  102. Lee, K.-J. et al. Self-consistent calculation of spin transport and magnetization dynamics. Phys. Rep. 531, 89–113 (2013).

    Article  Google Scholar 

  103. Xiao, J., Zangwill, A. & Stiles, M. D. Spin-transfer torque for continuously variable magnetization. Phys. Rev. B 73, 054428 (2006).

    Article  Google Scholar 

  104. Park, H.-J. et al. Numerical computation of spin-transfer torques for antiferromagnetic domain walls. Phys. Rev. B 101, 144431 (2020).

    Article  CAS  Google Scholar 

  105. Kim, J. H. et al. Spin–orbit torques associated with ferrimagnetic order in Pt/GdFeCo/MgO layers. Sci. Rep. 8, 6017 (2018).

    Article  Google Scholar 

  106. Haltz, E. et al. Deviations from bulk behavior in TbFe(Co) thin films: interfaces contribution in the biased composition. Phys. Rev. Mater. 2, 104410 (2018).

    Article  CAS  Google Scholar 

  107. Kim, D.-H. et al. Bulk Dzyaloshinskii–Moriya interaction in amorphous ferrimagnetic alloys. Nat. Mater. 18, 685–690 (2019).

    Article  CAS  Google Scholar 

  108. Krishnia, S. et al. Making spin-orbit coupling visible in single layer ferrimagnets: direct observation of spin–orbit torques and chiral spin textures. Phys. Rev. Appl. 16, 024040 (2021).

    Article  CAS  Google Scholar 

  109. Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442 (2020).

    Article  CAS  Google Scholar 

  110. Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic domain wall velocity induced by Néel spin–orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

    Article  CAS  Google Scholar 

  111. Shiino, T. et al. Antiferromagnetic domain wall motion by spin–orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

    Article  Google Scholar 

  112. Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).

    Article  Google Scholar 

  113. Amin, V. P., Li, J., Stiles, M. D. & Haney, P. M. Intrinsic spin currents in ferromagnets. Phys. Rev. B 99, 220405(R) (2019).

    Article  Google Scholar 

  114. Kim, K.-W. & Lee, K.-J. Generalized spin drift-diffusion formalism in the presence of spin–orbit interaction of ferromagnets. Phys. Rev. Lett. 125, 207205 (2020).

    Article  CAS  Google Scholar 

  115. Baek, S.-H. C. et al. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    Article  CAS  Google Scholar 

  116. Iihama, S. et al. Spin-transfer torque induced by the spin anomalous Hall effect. Nat. Electron. 1, 120–123 (2018).

    Article  Google Scholar 

  117. Wang, W. et al. Anomalous spin–orbit torques in magnetic single-layer films. Nat. Nanotechnol. 14, 819–824 (2019).

    Article  CAS  Google Scholar 

  118. Céspedes‐Berrocal, D. et al. Current‐induced spin torques on single GdFeCo magnetic layers. Adv. Mater. 33, 2007047 (2021).

    Article  Google Scholar 

  119. Kryglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  Google Scholar 

  120. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Article  Google Scholar 

  121. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  CAS  Google Scholar 

  122. Liensberger, L. et al. Exchange-enhanced ultrastrong magnon–magnon coupling in a compensated ferrimagnet. Phys. Rev. Lett. 123, 117204 (2019).

    Article  CAS  Google Scholar 

  123. Nambu, Y. et al. Observation of magnon polarization. Phys. Rev. Lett. 125, 027201 (2020).

    Article  CAS  Google Scholar 

  124. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article  CAS  Google Scholar 

  125. Uchida, K. et al. Observation of the spin-Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  Google Scholar 

  126. Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).

    Article  Google Scholar 

  127. Geprägs, S. et al. Origin of the spin Seebeck effect in compensated ferrimagnets. Nat. Commun. 7, 10452 (2016).

    Article  Google Scholar 

  128. Bauer, J. J. et al. Dysprosium iron garnet thin films with perpendicular magnetic anisotropy on silicon. Adv. Electron. Mater. 6, 1900820 (2020).

    Article  CAS  Google Scholar 

  129. Hu, C.-M. Dawn of cavity spintronics. Phys. Can. 72, 76 (2016).

    Google Scholar 

  130. Shim, J.-C., Kim, S.-J., Kim, S. K. & Lee, K.-J. Enhanced magnon–photon coupling at the angular momentum compensation point of ferrimagnets. Phys. Rev. Lett. 125, 027205 (2020).

    Article  CAS  Google Scholar 

  131. Huang, M. et al. Voltage control of ferrimagnetic order and voltage-assisted writing of ferrimagnetic spin textures. Nat. Nanotechnol. 16, 981–988 (2021).

    Article  CAS  Google Scholar 

  132. Swaving, A. C. & Duine, R. A. Current-induced torques in continuous antiferromagnetic textures. Phys. Rev. B 83, 054428 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

K.-J.L. acknowledges support from the Samsung Research Funding Center of Samsung Electronics under project no. SRFCMA1702-02. T.R. acknowledges support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the programme Exciting Exchange, the European Union Horizon 2020 and the innovation programme under the FET-Open grand agreement no. 713481 (SPICE), and the European Research Council ERC grant agreement no. 856538 (3D MAGiC). H.Y. is supported by SpOT-LITE programme (A*STAR grant, A18A6b0057) through RIE2020 funds, Samsung Electronics’ University R&D programme (Exotic SOT materials/SOT characterization) and a National Research Foundation (NRF) Singapore Investigatorship (NRFI06-2020-0015). G.S.D.B. acknowledges support through the DARPA ‘Topological Excitations in Electronics (TEE)’ programme. S.K.K. is supported by Brain Pool Plus Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (NRF-2020H1D3A2A03099291) and the National Research Foundation of Korea funded by the Korea Government via the SRC Center for Quantum Coherence in Condensed Matter (NRF-2016R1A5A1008184).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions from all authors.

Corresponding author

Correspondence to Kyung-Jin Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Uwe Bovensiepen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.K., Beach, G.S.D., Lee, KJ. et al. Ferrimagnetic spintronics. Nat. Mater. 21, 24–34 (2022). https://doi.org/10.1038/s41563-021-01139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01139-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing