Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular sieving of ethylene from ethane using a rigid metal–organic framework

Abstract

There are great challenges in developing efficient adsorbents to replace the currently used and energy-intensive cryogenic distillation processes for olefin/paraffin separation, owing to the similar physical properties of the two molecules. Here we report an ultramicroporous metal–organic framework [Ca(C4O4)(H2O)], synthesized from calcium nitrate and squaric acid, that possesses rigid one-dimensional channels. These apertures are of a similar size to ethylene molecules, but owing to the size, shape and rigidity of the pores, act as molecular sieves to prevent the transport of ethane. The efficiency of this molecular sieve for the separation of ethylene/ethane mixtures is validated by breakthrough experiments with high ethylene productivity under ambient conditions. This material can be easily synthesized at the kilogram scale using an environmentally friendly method and is water-stable, which is important for potential industrial implementation. The strategy of using highly rigid metal–organic frameworks with well defined and rigid pores could also be extended to other porous materials for chemical separation processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and gas sorption properties of UTSA-280.
Fig. 2: Single-crystal structure of UTSA-280∙0.20C2H4 and preferential C2H4 binding.
Fig. 3: Column breakthrough results and scalable synthesis of UTSA-280.
Fig. 4: Separation performance of UTSA-280 for a gas mixture containing C2H4.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other finding of this study are available from the corresponding authors upon reasonable request.

References

  1. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  Google Scholar 

  2. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  Google Scholar 

  3. Ren, T., Patel, M. & Blok, K. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes. Energy 31, 425–451 (2006).

    Article  CAS  Google Scholar 

  4. Kitagawa, S. Porous materials and the age of gas. Angew. Chem. Int. Ed. 54, 10686–10687 (2015).

    Article  CAS  Google Scholar 

  5. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  6. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    Article  CAS  Google Scholar 

  7. Bloch, E. D. et al. Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012).

    Article  CAS  Google Scholar 

  8. Yang, S. et al. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nat. Chem. 7, 121–129 (2014).

    Article  CAS  Google Scholar 

  9. Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    Article  CAS  Google Scholar 

  10. Cui, X. et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 353, 141–144 (2016).

    Article  CAS  Google Scholar 

  11. Liao, P.-Q., Huang, N.-Y., Zhang, W.-X., Zhang, J.-P. & Chen, X.-M. Controlling guest conformation for efficient purification of butadiene. Science 356, 1193–1196 (2017).

    Article  CAS  Google Scholar 

  12. Yoon, J. W. et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nat. Mater. 16, 526–531 (2016).

    Article  Google Scholar 

  13. Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).

    Article  CAS  Google Scholar 

  14. He, Y., Krishna, R. & Chen, B. Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ. Sci. 5, 9107–9120 (2012).

    Article  CAS  Google Scholar 

  15. Zhai, Q.-G. et al. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials. Nat. Commun. 7, 13645 (2016).

    Article  CAS  Google Scholar 

  16. Ji, P. et al. Transformation of metal–organic framework secondary building units into hexanuclear Zr-alkyl catalysts for ethylene polymerization. J. Am. Chem. Soc. 139, 11325–11328 (2017).

    Article  CAS  Google Scholar 

  17. Klet, R. C. et al. Single-site organozirconium catalyst embedded in a metal–organic framework. J. Am. Chem. Soc. 137, 15680–15683 (2015).

    Article  CAS  Google Scholar 

  18. Lin, J. Y. S. Molecular sieves for gas separation. Science 353, 121–122 (2016).

    Article  CAS  Google Scholar 

  19. Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Article  CAS  Google Scholar 

  20. Pan, L., Olson, D. H., Ciemnolonski, L. R., Heddy, R. & Li, J. Separation of hydrocarbons with a microporous metal–organic framework. Angew. Chem. Int. Ed. 45, 616–619 (2006).

    Article  CAS  Google Scholar 

  21. Ma, S., Sun, D., Yuan, D., Wang, X. & Zhou, H. Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure. J. Am. Chem. Soc. 131, 6445–6451 (2009).

    Article  CAS  Google Scholar 

  22. Bao, Z. et al. Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy Environ. Sci. 9, 3612–3641 (2016).

    Article  CAS  Google Scholar 

  23. Adil, K. et al. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402–3430 (2017).

    Article  CAS  Google Scholar 

  24. Robl, C. & Weiss, A. Alkaline-earth squarates III. CaC4O4·2.5H2O, a novel polymer complex with zeolitic properties (1). Mater. Res. Bull. 22, 373–380 (1987).

    Article  CAS  Google Scholar 

  25. Webster, C. E., Drago, R. S. & Zerner, M. C. Molecular dimensions for adsorptives. J. Am. Chem. Soc. 120, 5509–5516 (1998).

    Article  CAS  Google Scholar 

  26. Mofarahi, M. & Salehi, S. M. Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption 19, 101–110 (2013).

    Article  CAS  Google Scholar 

  27. Anson, A., Wang, Y., Lin, C. C. H., Kuznicki, T. M. & Kuznicki, S. M. Adsorption of ethane and ethylene on modified ETS-10. Chem. Eng. Sci. 63, 4171–4175 (2008).

    Article  CAS  Google Scholar 

  28. Yang, R. T. Adsorbents: Fundamentals and Applications (John Wiley & Sons, Hoboken, 2003).

  29. Li, B. et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 136, 8654–8660 (2014).

    Article  CAS  Google Scholar 

  30. Bereciartua, P. J. et al. Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science 358, 1068–1071 (2017).

    Article  CAS  Google Scholar 

  31. Yoon, J. W. et al. Controlled reducibility of a metal–organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew. Chem. Int. Ed. 49, 5949–5952 (2010).

    Article  CAS  Google Scholar 

  32. Aguado, S., Bergeret, G., Daniel, C. & Farrusseng, D. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. J. Am. Chem. Soc. 134, 14635–14637 (2012).

    Article  CAS  Google Scholar 

  33. Faiz, R. & Li, K. Olefin/paraffin separation using membrane based facilitated transport/chemical absorption techniques. Chem. Eng. Sci. 73, 261–284 (2012).

    Article  CAS  Google Scholar 

  34. Sen, S. et al. Cooperative bond scission in a soft porous crystal enables discriminatory gate opening for ethylene over ethane. J. Am. Chem. Soc. 139, 18313–18321 (2017).

    Article  CAS  Google Scholar 

  35. Kishida, K. et al. Recognition of 1,3-butadiene by a porous coordination polymer. Angew. Chem. Int. Ed. 55, 13784–13788 (2016).

    Article  CAS  Google Scholar 

  36. Sadrameli, S. M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review I: thermal cracking review. Fuel 140, 102–115 (2015).

    Article  CAS  Google Scholar 

  37. Zhang, Y., Wu, J.-h & Zhang, D.-k Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz. Energy Fuels 22, 1142–1147 (2008).

    Article  CAS  Google Scholar 

  38. Horike, S. et al. Postsynthesis modification of a porous coordination polymer by LiCl to enhance H+ transport. J. Am. Chem. Soc. 135, 4612–4615 (2013).

    Article  CAS  Google Scholar 

  39. Lin, R.-B. et al. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J. Am. Chem. Soc. 139, 8022–8028 (2017).

    Article  CAS  Google Scholar 

  40. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  41. Barone, V. et al. Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. J. Comput. Chem. 30, 934–939 (2009).

    Article  CAS  Google Scholar 

  42. Krishna, R. The Maxwell–Stefan description of mixture diffusion in nanoporous crystalline materials. Microporous Mesoporous Mater. 185, 30–50 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant AX-1730 from the Welch Foundation (B.C.), the National Natural Science Foundation of China (grant 21606163) and the Natural Science Foundation of Shanxi (grant 201601D021042).

Author information

Authors and Affiliations

Authors

Contributions

R.-B.L., W.Z. and B.C. conceived the research idea and designed the experiments. R.-B.L., L.L. and H.-L.Z. performed the experiments and analysed data. H.-L.Z. participated in the structural determination of MOFs. R.K. performed the simulations of mixture separations. L.L., C.H., S.L. and J.L. participated in the breakthrough measurement. H.W. and W.Z. did the DFT calculation. R.-B.L., W.Z. and B.C. discussed and co-wrote the paper. All authors discussed the results and commented on the manuscript. R.-B.L., L.L. and H.-L.Z. contributed equally to this work.

Corresponding authors

Correspondence to Wei Zhou or Banglin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–38, Supplementary Tables 1–4, Supplementary References 1–12

Supplementary Structure CIF Files

Structure CIF files 1–4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, RB., Li, L., Zhou, HL. et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nature Mater 17, 1128–1133 (2018). https://doi.org/10.1038/s41563-018-0206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-018-0206-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing