Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anterior prefrontal brain activity during emotion control predicts resilience to post-traumatic stress symptoms

Abstract

Regulating social emotional actions is essential for coping with life stressors and is associated with control by the anterior prefrontal cortex (aPFC) over the amygdala. However, it remains unclear to what extent prefrontal emotion regulation capacities contribute to resilience against developing post-traumatic stress disorder (PTSD) symptoms. Here, 185 police recruits who experienced their core trauma in the line of duty participated in a prospective longitudinal study. Pre- and post-trauma, they performed a well-established functional magnetic resonance imaging (fMRI) approach–avoidance task, mapping impulsive and controlled emotional actions. Higher baseline aPFC, dorsal and medial frontal pole activity was related to lower PTSD symptoms after trauma exposure. aPFC activity predicted symptom development over and above self-reported and behavioural measures. Trauma exposure, but not trauma symptoms, predicted amygdala activation at follow-up. These findings suggest that prefrontal emotion regulation activity predicts increased resilience against developing post-traumatic stress symptoms and may provide fruitful starting points for prediction and intervention studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study timeline, reported trauma exposure and symptoms.
Fig. 2: Experimental paradigm and main task effects.
Fig. 3: Predisposing effects for PTSD symptom development.
Fig. 4: Effects of trauma exposure on activation for incongruent > congruent responses.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The computer code that supports the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Liberzon, I. & Abelson, J. L. Context processing and the neurobiology of post-traumatic stress disorder. Neuron 92, 14–30 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rabinak, C. A. et al. Focal and aberrant prefrontal engagement during emotion regulation in veterans with posttraumatic stress disorder. Depress. Anxiety 31, 851–861 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fitzgerald, J. M., Digangi, J. A. & Phan, K. L. Functional neuroanatomy of emotion and its regulation in PTSD. Harv. Rev. Psychiatry 26, 116–128 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kalisch, R. et al. The resilience framework as a strategy to combat stress-related disorders. Nat. Hum. Behav. 1, 784–790 (2017).

    Article  PubMed  Google Scholar 

  5. Admon, R., Milad, M. R. & Hendler, T. A causal model of post-traumatic stress disorder: disentangling predisposed from acquired neural abnormalities. Trends Cogn. Sci. 17, 337–347 (2013).

    Article  PubMed  Google Scholar 

  6. de Vries, G.-J. & Olff, M. The lifetime prevalence of traumatic events and posttraumatic stress disorder in the Netherlands. J. Trauma. Stress 22, 259–267 (2009).

    Article  PubMed  Google Scholar 

  7. Lanius, R. A., Frewen, P. A., Vermetten, E. & Yehuda, R. Fear conditioning and early life vulnerabilities: two distinct pathways of emotional dysregulation and brain dysfunction in PTSD. Eur. J. Psychotraumatol. 1, 5467 (2010).

    Article  Google Scholar 

  8. Ehlers, A. et al. Heart rate responses to standardized trauma-related pictures in acute posttraumatic stress disorder. Int. J. Psychophysiol. 78, 27–34 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hayes, J. P., Hayes, S. M. & Mikedis, A. M. Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biol. Mood Anxiety Disord. 2, 1–13 (2012).

    Article  Google Scholar 

  10. Patel, R., Spreng, R. N., Shin, L. M. & Girard, T. A. Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 36, 2130–2142 (2012).

    Article  PubMed  Google Scholar 

  11. Michopoulos, V., Norrholm, S. D. & Jovanovic, T. Diagnostic biomarkers for posttraumatic stress disorder: promising horizons from translational neuroscience research. Biol. Psychiatry 78, 344–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pitman, R. K. et al. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 13, 769–787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koch, S. B. J. et al. Intranasal oxytocin normalizes amygdala functional connectivity in posttraumatic stress disorder. Neuropsychopharmacology 41, 2041–2051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sripada, R. K. et al. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J. Psychiatry Neurosci. 37, 241–249 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rauch, S. L., Shin, L. M. & Phelps, E. A. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research-past, present, and future. Biol. Psychiatry 60, 376–382 (2006).

    Article  PubMed  Google Scholar 

  17. Jovanovic, T. & Ressler, K. J. How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am. J. Psychiatry 167, 648–662 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Volman, I., Toni, I., Verhagen, L. & Roelofs, K. Endogenous testosterone modulates prefrontal–amygdala connectivity during social emotional behavior. Cereb. Cortex 21, 2282–2290 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Volman, I. et al. Reduced serotonin transporter availability decreases prefrontal control of the amygdala. J. Neurosci. 33, 8974–8979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Radke, S. et al. Testosterone biases the amygdala toward social threat approach. Sci. Adv. 1, e1400074–e1400074 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bertsch, K. et al. Neural correlates of emotional action control in angerprone women with borderline personality disorder. J. Psychiatry Neurosci. 43, 161–170 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. LeDoux, J. E., Moscarello, J., Sears, R. & Campese, V. The birth, death and resurrection of avoidance: a reconceptualization of a troubled paradigm. Mol. Psychiatry 22, 24–36 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. (American Psychiatric Publishing, 2013).

  24. Neubert, F. X., Mars, R. B., Thomas, A. G., Sallet, J. & Rushworth, M. F. S. Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81, 700–713 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Ramnani, N. & Owen, A. M. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nat. Rev. Neurosci. 5, 184–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Bramson, B. et al. Human lateral frontal pole contributes to control over emotional approach–avoidance actions. J. Neurosci. 40, 2925–2934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Folloni, D. et al. Dichotomous organization of amygdala/temporal-prefrontal bundles in both humans and monkeys. Elife 8, 1–23 (2019).

    Article  Google Scholar 

  28. Kalisch, R. The functional neuroanatomy of reappraisal: time matters. Neurosci. Biobehav. Rev. 33, 1215–1226 (2009).

    Article  PubMed  Google Scholar 

  29. Morawetz, C., Bode, S., Derntl, B. & Heekeren, H. R. The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: a meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 72, 111–128 (2017).

    Article  PubMed  Google Scholar 

  30. Koch, S. B. J., Mars, R. B., Toni, I. & Roelofs, K. Emotional control, reappraised. Neurosci. Biobehav. Rev. 95, 528–534 (2018).

    Article  PubMed  Google Scholar 

  31. Lanius, R. A. et al. Functional connectivity of dissociative responses in posttraumatic stress disorder: a functional magnetic resonance imaging investigation. Biol. Psychiatry 57, 873–884 (2005).

    Article  PubMed  Google Scholar 

  32. Morey, R. A., Petty, C. M., Cooper, D. A., LaBar, K. S. & McCarthy, G. Neural systems for executive and emotional processing are modulated by symptoms of posttraumatic stress disorder in Iraq War veterans. Psychiatry Res. Neuroimaging 162, 59–72 (2008).

    Article  Google Scholar 

  33. Sun, D. et al. Brain structural covariance network topology in remitted posttraumatic stress disorder. Front. Psychiatry 9, 1–10 (2018).

    Article  Google Scholar 

  34. Sadeh, N. et al. Neurobiological indicators of disinhibition in posttraumatic stress disorder. Hum. Brain Mapp. 36, 3076–3086 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sadeh, N. et al. SKA2 methylation is associated with decreased prefrontal cortical thickness and greater PTSD severity among trauma-exposed veterans. Mol. Psychiatry 21, 357–363 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Admon, R. et al. Human vulnerability to stress depends on amygdala’s predisposition and hippocampal plasticity. Proc. Natl Acad. Sci. U. S. A 106, 14120–14125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Admon, R. et al. Imbalanced neural responsivity to risk and reward indicates stress vulnerability in humans. Cereb. Cortex 23, 28–35 (2013).

    Article  PubMed  Google Scholar 

  38. Van Wingen, G. A., Geuze, E., Vermetten, E. & Fernández, G. Perceived threat predicts the neural sequelae of combat stress. Mol. Psychiatry 16, 664–671 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Carlier, I. V. E., Lamberts, R. D. & Gersons, B. P. Risk factors for posttraumatic stress symptomatology in police officers: a prospective analysis. J. Nerv. Ment. Dis. 185, 498–506 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Koch, S. B. J. et al. The role of automatic defensive responses in the development of posttraumatic stress symptoms in police recruits: protocol of a prospective study. Eur. J. Psychotramatol. 8, 1412226 (2017).

    Article  Google Scholar 

  41. Chen, M. & Bargh, J. A. Consequences of automatic evaluation: immediate behavioral predispositions to approach or avoid the stimulus. Personal. Soc. Psychol. Bull. 25, 215–224 (1999).

    Article  Google Scholar 

  42. Rotteveel, M. & Phaf, R. H. Automatic affective evaluation does not automatically predispose for arm flexion and extension. Emotion 4, 156–172 (2004).

    Article  PubMed  Google Scholar 

  43. Bramson, B., Jensen, O., Toni, I. & Roelofs, K. Cortical oscillatory mechanisms supporting the control of human social–emotional actions. J. Neurosci. 38, 5739–5749 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McLaren, D. G., Ries, M. L., Xu, G. & Johnson, S. C. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage 61, 1277–1286 (2012).

    Article  PubMed  Google Scholar 

  45. Van Wingen, G. A., Geuze, E., Vermetten, E. & Fernández, G. The neural consequences of combat stress: long-term follow-up. Mol. Psychiatry 17, 116–118 (2012).

    Article  PubMed  Google Scholar 

  46. Yehuda, R., Halligan, S. L. & Grossman, R. Childhood trauma and risk for PTSD: relationship to intergenerational effects of trauma, parental PTSD, and cortisol excretion. Dev. Psychopathol. 13, 733–753 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Tottenham, N. et al. Elevated amygdala response to faces following early deprivation. Dev. Sci. 14, 190–204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dannlowski, U. et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol. Psychiatry 71, 286–293 (2012).

    Article  PubMed  Google Scholar 

  49. Yehuda, R. et al. Post-traumatic stress disorder. Nat. Rev. Dis. Prim. 1, 15057 (2015).

    Article  PubMed  Google Scholar 

  50. Volman, I. et al. Testosterone modulates altered prefrontal control of emotional actions in psychopathic offenders. eNeuro 3, 1–12 (2016).

    Article  Google Scholar 

  51. Bertsch, K. et al. Out of control? Acting out anger is associated with deficient prefrontal emotional action control in male patients with borderline personality disorder. Neuropharmacology 156, 107463 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Kaldewaij, R. et al. Frontal control over automatic emotional action tendencies predicts acute stress responsivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 975–983 (2019).

    PubMed  Google Scholar 

  53. Roelofs, K., Minelli, A., Mars, R. B., van Peer, J. & Toni, I. On the neural control of social emotional behavior. Soc. Cogn. Affect. Neurosci. 4, 50–58 (2009).

    Article  PubMed  Google Scholar 

  54. Williams, J. M. G., Mathews, A. & MacLeod, C. The emotional Stroop task and psychopathology. Psychol. Bull. 120, 3–24 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Davies, C. D., Niles, A. N., Pittig, A., Arch, J. J. & Craske, M. G. Physiological and behavioral indices of emotion dysregulation as predictors of outcome from cognitive behavioral therapy and acceptance and commitment therapy for anxiety. J. Behav. Ther. Exp. Psychiatry 46, 35–43 (2015).

    Article  PubMed  Google Scholar 

  56. Schnyder, U. et al. Psychotherapies for PTSD: what do they have in common? Eur. J. Psychotraumatol. 6, 28186 (2015).

    Article  PubMed  Google Scholar 

  57. Bryant, R. A. et al. Augmenting cognitive behaviour therapy for post-traumatic stress disorder with emotion tolerance training: a randomized controlled trial. Psychol. Med. 43, 2153–2160 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Nicholson, A. A. et al. The neurobiology of emotion regulation in posttraumatic stress disorder: amygdala downregulation via real-time fMRI neurofeedback. Hum. Brain Mapp. 38, 541–560 (2017).

    Article  PubMed  Google Scholar 

  59. Fonzo, G. A. et al. Selective effects of psychotherapy on frontopolar cortical function in PTSD. Am. J. Psychiatry 174, 1175–1184 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Klumpers, F. et al. Prefrontal mechanisms of fear reduction after threat offset. Biol. Psychiatry 68, 1031–1038 (2010).

    Article  PubMed  Google Scholar 

  61. Price, C. J. & Friston, K. J. Scanning patients with tasks they can perform. Hum. Brain Mapp. 8, 102–108 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schönbrodt, F. D. & Perugini, M. At what sample size do correlations stabilize? J. Res. Pers. 47, 609–612 (2013).

    Article  Google Scholar 

  63. Boeschoten, M. A. et al. Development and evaluation of the Dutch Clinician-Administered PTSD Scale for DSM-5 (CAPS-5). Eur. J. Psychotraumatol. 9, 1546085 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Weathers, F. W. et al. The PTSD checklist for DSM-5 (PCL-5). https://www.ptsd.va.gov (2013).

  65. Kaldewaij, R. et al. High endogenous testosterone levels are associated with diminished neural emotional control in aggressive police recruits. Psychol. Sci. 30, 1161–1173 (2019).

    Article  PubMed  Google Scholar 

  66. Boeschoten, M. A., Bakker, A., Jongedijk, R. A. & Olff, M. PTSD checklist for DSM-5 – Dutch version. (Arq Psychotrauma Expert Groep, 2014).

  67. Peter-Hagene, L. C. & Ullman, S. E. Sexual assault characteristics effects on PTSD and psychosocial mediators: a cluster analysis approach to sexual assault types. Psychol. Trauma 7, 162–170 (2015).

    Article  PubMed  Google Scholar 

  68. Carlier, I. V. E. & Gersons, B. P. R. Development of a scale for traumatic incidents in police work. Psychiatr. Fenn. 23, 59–70 (1992).

    Google Scholar 

  69. Ekman, P. & Friesen, W. V. Pictures of Facial Affect (Consulting Psychologists Press, 1976).

  70. Matsumoto, D. & Ekman, P. Japanese and Caucasian Facial Expressions of Emotion (JACFEE) and Neutral Faces (San Francisco Department of Psychiatry of Univ. California, 1988).

  71. Lundqvist, D., Flykt, A. & Ohman, A. The Karolinska Directed Emotional Faces (KDEF) CD ROM (Department of Clinical Neuroscience, Psychology Section, Karolinska Institutet, 1998).

  72. Martinez, A. M. & Benavente, R. The AR Face Database. Technical Report 24 (Computer Vision Center, 1998).

  73. Tyborowska, A., Volman, I., Smeekens, S., Toni, I. & Roelofs, K. Testosterone during puberty shifts emotional control from pulvinar to anterior prefrontal cortex. J. Neurosci. 36, 6156–6164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Poser, B. A., Versluis, M. J., Hoogduin, J. M. & Norris, D. G. BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: parallel-acquired inhomogeneity-desensitized fMRI. Magn. Reson. Med. 55, 1227–1235 (2006).

    Article  PubMed  Google Scholar 

  75. Nieuwhof, F. et al. Impaired dual tasking in Parkinson’s disease is associated with reduced focusing of cortico-striatal activity. Brain 140, 1384–1398 (2017).

    Article  PubMed  Google Scholar 

  76. Pruim, R. H. R. et al. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage 112, 267–277 (2015).

    Article  PubMed  Google Scholar 

  77. Lund, T. E., Nørgaard, M. D., Rostrup, E., Rowe, J. B. & Paulson, O. B. Motion or activity: their role in intra- and inter-subject variation in fMRI. Neuroimage 26, 960–964 (2005).

    Article  PubMed  Google Scholar 

  78. Verhagen, L., Grol, M. J., Dijkerman, H. C. & Toni, I. Studying visually-guided reach-to-grasp movements in an MR-environment. Neuroimage 31, S45 (2006).

    Google Scholar 

  79. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all participants for their willingness to participate in this study. The authors thank A. Smit and other personnel of the Dutch Police Academy for their valuable help with recruiting participants and facilitating this study. The authors gratefully acknowledge contributions of I. Kersten, T. Döpp, N. de Valk, L. Bovy and L. Nuijen in participant recruitment and data acquisition, N. Garaux in assistance with data analysis and V. van Ast for her help with setting up the study. This study was funded by the Netherlands Organization for Scientific Research (NWO VICI-grant 453-12-0010) and a starting grant from the European Research Council (StG2012 313749), both awarded to K.R. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.K., M.M.H., W.Z., S.B.J.K, F.K. and K.R. contributed to the study design. R.K., W.Z. and M.M.H. conducted the experiment. R.K. performed data analysis. R.K., S.B.J.K. and K.R. drafted the manuscript. R.K., M.M.H., W.Z., S.B.J.K, F.K. and K.R. edited the manuscript and approved the final version of the manuscript for submission.

Corresponding author

Correspondence to Reinoud Kaldewaij.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Peer review information Nature Human Behaviour thanks Talma Hendler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Jamie Horder

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Supplementary Figs. 1–4 and Supplementary Tables 1 and 2.

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaldewaij, R., Koch, S.B.J., Hashemi, M.M. et al. Anterior prefrontal brain activity during emotion control predicts resilience to post-traumatic stress symptoms. Nat Hum Behav 5, 1055–1064 (2021). https://doi.org/10.1038/s41562-021-01055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-021-01055-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing