Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range

Abstract

Horizontal gene transfer via plasmids could favour cooperation in bacteria, because transfer of a cooperative gene turns non-cooperative cheats into cooperators. This hypothesis has received support from theoretical, genomic and experimental analyses. By contrast, we show here, with a comparative analysis across 51 diverse species, that genes for extracellular proteins, which are likely to act as cooperative ‘public goods’, were not more likely to be carried on either: (1) plasmids compared to chromosomes; or (2) plasmids that transfer at higher rates. Our results were supported by theoretical modelling which showed that, while horizontal gene transfer can help cooperative genes initially invade a population, it has less influence on the longer-term maintenance of cooperation. Instead, we found that genes for extracellular proteins were more likely to be on plasmids when they coded for pathogenic virulence traits, in pathogenic bacteria with a broad host-range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three hypotheses about why selection might favour genes coding for extracellular proteins to be located on plasmids.
Fig. 2: Extracellular proteins are not overrepresented on plasmids.
Fig. 3: Plasmid mobility and extracellular proteins.
Fig. 4: Plasmids facilitate the invasion but not the maintenance of cooperation.
Fig. 5: Plasmid loss can favour the maintenance of cooperation.
Fig. 6: Pathogenicity, host-range and the location of genes coding for extracellular proteins.

Similar content being viewed by others

Data availability

The dataset of genomes analysed during this study, including PSORTb results and plasmid mobility predictions of MOBsuite, will be made available in the public repository Dryad at: https://doi.org/10.5061/dryad.gxd2547n4

Code availability

Code used to solve equations in the theoretical modelling section of the paper can be found at: https://github.com/ThomasWilliamScott/Plasmid_cooperation.git

References

  1. Foster, K. R. in Social Behaviour (eds Szekely, T. et al.) 331–356 (Cambridge Univ. Press, 2010). https://doi.org/10.1017/CBO9780511781360.027

  2. McNally, L., Viana, M. & Brown, S. P. Cooperative secretions facilitate host range expansion in bacteria. Nat. Commun. 5, 4594 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Simonet, C. & McNally, L. Kin selection explains the evolution of cooperation in the gut microbiota. Proc. Natl Acad. Sci. USA 118, e2016046118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Hale, T. L. Genetic basis of virulence in Shigella species. Microbiol. Rev. 55, 206–224 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dinges, M. M., Orwin, P. M. & Schlievert, P. M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13, 16–34 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Jones, S. et al. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J. 12, 2477–2482 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sandoz, K. M., Mitzimberg, S. M. & Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl Acad. Sci. USA 104, 15876–15881 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ghoul, M., Griffin, A. S. & West, S. A. Toward an evolutionary definition of cheating. Evolution 68, 318–331 (2014).

    Article  PubMed  Google Scholar 

  12. Butaitė, E., Baumgartner, M., Wyder, S. & Kümmerli, R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat. Commun. 8, 414 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thomas, C., Nielsen, K., Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, J. The social evolution of bacterial pathogenesis. Proc. R. Soc. Lond. B 268, 61–69 (2001).

    Article  CAS  Google Scholar 

  15. Nogueira, T. et al. Horizontal gene transfer of the secretome drives the evolution of bacterial cooperation and virulence. Curr. Biol. 19, 1683–1691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mc Ginty, S. E., Rankin, D. J. & Brown, S. P. Horizontal gene transfer and the evolution of bacterial cooperation: mobile elements and bacterial cooperation. Evolution 65, 21–32 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mc Ginty, S. É., Lehmann, L., Brown, S. P. & Rankin, D. J. The interplay between relatedness and horizontal gene transfer drives the evolution of plasmid-carried public goods. Proc. R. Soc. B 280, 20130400 (2013).

    Article  Google Scholar 

  18. Dimitriu, T. et al. Genetic information transfer promotes cooperation in bacteria. Proc. Natl Acad. Sci. USA 111, 11103–11108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nogueira, T., Touchon, M. & Rocha, E. P. C. Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria. PLoS ONE 7, e49403 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Garcera, M. & Rocha, E. P. C. Community diversity and habitat structure shape the repertoire of extracellular proteins in bacteria. Nat. Commun. 11, 758 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kruskal, W. Miracles and statistics: the casual assumption of independence. J. Am. Stat. Assoc. 83, 929–940 (1988).

    Article  Google Scholar 

  22. Ives, A. R. & Zhu, J. Statistics for correlated data: phylogenies, space, and time. Ecol. Appl. 16, 20–32 (2006).

    Article  PubMed  Google Scholar 

  23. Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  24. Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, 1991).

  25. Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B. 326, 119–157 (1989).

    Article  CAS  Google Scholar 

  26. Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).

    Article  Google Scholar 

  27. Ruxton, G. & Colegrave, N. Experimental Design for the Life Sciences (Oxford Univ. Press, 2011).

  28. Stone, G. N., Nee, S. & Felsenstein, J. Controlling for non-independence in comparative analysis of patterns across populations within species. Philos. Trans. R. Soc. B 366, 1410–1424 (2011).

    Article  Google Scholar 

  29. Ives, A. R., Midford, P. E. & Garland, T. Jr. Within-species variation and measurement error in phylogenetic comparative methods. Syst. Biol. 56, 252–270 (2007).

    Article  PubMed  Google Scholar 

  30. Bakkeren, E. et al. Cooperative virulence can emerge via horizontal gene transfer but is stabilized by transmission. Preprint at bioRxiv https://doi.org/10.1101/2021.02.11.430745 (2021).

  31. Ghoul, M., Andersen, S. B. & West, S. A. Sociomics: using omic approaches to understand social evolution. Trends Genet. 33, 408–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. McInerney, J. O., McNally, A. & O’Connell, M. J. Why prokaryotes have pangenomes. Nat. Microbiol. 2, 17040 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Niehus, R., Mitri, S., Fletcher, A. G. & Foster, K. R. Migration and horizontal gene transfer divide microbial genomes into multiple niches. Nat. Commun. 6, 8924 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Cordero, O. X. et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337, 1228–1231 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Nocelli, N., Bogino, P. C., Banchio, E. & Giordano, W. Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials 9, 418 (2016).

    Article  PubMed Central  Google Scholar 

  37. Ciofu, O., Beveridge, T. J., Kadurugamuwa, J., Walther-Rasmussen, J. & Høiby, N. Chromosomal β-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45, 9–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millán, Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 19, 347–359 (2021).

    Article  PubMed  Google Scholar 

  39. Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rankin, D. J., Rocha, E. P. C. & Brown, S. P. What traits are carried on mobile genetic elements, and why? Heredity 106, 1–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  42. Clutton‐Brock, T. H. & Harvey, P. H. Primate ecology and social organization. J. Zool. 183, 1–39 (1977).

    Article  Google Scholar 

  43. Jennions, M. D. & Møller, A. P. A survey of the statistical power of research in behavioral ecology and animal behavior. Behav. Ecol. 14, 438–445 (2003).

    Article  Google Scholar 

  44. Crawley, M. J. Statistics: An Introduction Using R (John Wiley & Sons, 2014).

  45. Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 1988).

  46. Robertson, J. & Nash, J. H. E. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 4, e000206 (2018).

    PubMed Central  Google Scholar 

  47. Robertson, J., Bessonov, K., Schonfeld, J. & Nash, J. H. E. Universal whole-sequence-based plasmid typing and its utility to prediction of host range and epidemiological surveillance. Microb. Genom. 6, mgen000435 (2020).

    PubMed Central  Google Scholar 

  48. Smillie, C., Garcillan-Barcia, M. P., Francia, M. V., Rocha, E. P. C. & de la Cruz, F. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74, 434–452 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mc Ginty, S. É. & Rankin, D. J. The evolution of conflict resolution between plasmids and their bacterial hosts. Evolution 66, 1662–1670 (2012).

    Article  Google Scholar 

  50. Hamilton, W. D. Genetical evolution of social behaviour I & II. J. Theor. Biol. 7, 1–52 (1964).

    Article  CAS  PubMed  Google Scholar 

  51. Hamilton, W. D. The evolution of altruistic behavior. Am. Nat. 97, 354–356 (1963).

  52. Ghigo, J. M. Natural conjugative plasmids induce bacterial biofilm development. Nature 412, 442–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Di Venanzio, G. et al. Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination. Proc. Natl Acad. Sci. USA 116, 1378–1383 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sheppard, R. J., Beddis, A. E. & Barraclough, T. G. The role of hosts, plasmids and environment in determining plasmid transfer rates: a meta-analysis. Plasmid 108, 102489 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Rodríguez-Beltrán, J. et al. Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. Proc. Natl Acad. Sci. USA 117, 15755–15762 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cornelis, G. R. et al. The virulence plasmid of yersinia, an antihost genome. Microbiol. Mol. Biol. Rev. 62, 1315–1352 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Köstlbacher, S., Collingro, A., Halter, T., Domman, D. & Horn, M. Coevolving plasmids drive gene flow and genome plasticity in host-associated intracellular bacteria. Curr. Biol. 31, 346–357 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gupta, A., Kapil, R., Dhakan, D. B. & Sharma, V. K. MP3: a software tool for the prediction of pathogenic proteins in genomic and metagenomic data. PLoS ONE 9, e93907 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 1, 0010 (2016).

    Article  Google Scholar 

  60. Carrier, T., Jones, K. L. & Keasling, J. D. mRNA stability and plasmid copy number effects on gene expression from an inducible promoter system. Biotechnol. Bioeng. 59, 666–672 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Rodríguez-Beltrán, J. et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat. Ecol. Evol. 2, 873–881 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dietel, A.-K., Kaltenpoth, M. & Kost, C. Convergent evolution in intracellular elements: plasmids as model endosymbionts. Trends Microbiol. 26, 755–768 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Rocha, E. P. C. & Danchin, A. Base composition bias might result from competition for metabolic resources. Trends Genet. 18, 291–294 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Garcia-Garcera, M., Touchon, M., Brisse, S. & Rocha, E. P. C. Metagenomic assessment of the interplay between the environment and the genetic diversification of Acinetobacter. Environ. Microbiol. 19, 5010–5024 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kümmerli, R., Schiessl, K. T., Waldvogel, T., McNeill, K. & Ackermann, M. Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol. Lett. 17, 1536–1544 (2014).

    Article  PubMed  Google Scholar 

  66. Canchaya, C., Fournous, G., Chibani-Chennoufi, S., Dillmann, M. L. & Brüssow, H. Phage as agents of lateral gene transfer. Curr. Opin. Microbiol. 6, 417–424 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Burrus, V. & Waldor, M. K. Shaping bacterial genomes with integrative and conjugative elements. Res. Microbiol. 155, 376–386 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. O’Brien, F. G. et al. Origin-of-transfer sequences facilitate mobilisation of non-conjugative antimicrobial-resistance plasmids in Staphylococcus aureus. Nucleic Acids Res. 43, 7971–7983 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rodríguez-Rubio, L. et al. Extensive antimicrobial resistance mobilization via multicopy plasmid encapsidation mediated by temperate phages. J. Antimicrob. Chemother. 75, 3173–3180 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ramsay, J. P. & Firth, N. Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Curr. Opin. Microbiol. 38, 1–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801–3806 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cohen, O., Gophna, U. & Pupko, T. The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol. Biol. Evol. 28, 1481–1489 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Ding, W., Baumdicker, F. & Neher, R. A. panX: pan-genome analysis and exploration. Nucleic Acids Res. 46, e5 (2018).

    Article  PubMed  Google Scholar 

  74. Gardy, J. L. & Brinkman, F. S. L. Methods for predicting bacterial protein subcellular localization. Nat. Rev. Microbiol. 4, 741–751 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Ference, C. M. et al. Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. Mol. Plant Pathol. 19, 1302–1318 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Morris, C. E., Lamichhane, J. R., Nikolić, I., Stanković, S. & Moury, B. The overlapping continuum of host range among strains in the Pseudomonas syringae complex. Phytopathol. Res 1, 4 (2019).

    Article  Google Scholar 

  77. Hadfield, J. D. MCMCglmm Course Notes (2019); https://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf

  78. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article  Google Scholar 

  79. Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface https://doi.org/10.1098/rsif.2017.0213 (2017).

  80. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  83. Washburne, A. D. et al. Methods for phylogenetic analysis of microbiome data. Nat. Microbiol. 3, 652–661 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Som, A. Causes, consequences and solutions of phylogenetic incongruence. Brief. Bioinform. 16, 536–548 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. MacLean, K. Foster, S. Brown, L. Belcher, C. Hao and especially E. Rocha for their helpful comments, and R. Goldberg and V. Pike for their support with MCMCglmm. We thank J. Robertson for providing plasmid mobility data from the MOBsuite database. We thank the BBSRC (BB/M011224/1: A.E.D.), ERC (SESE: J.L.T., A.S.G. and M.G.; 834164: T.W.S and S.A.W.) and NSERC-CRSNG of Canada (G.W.) for funding. Conceptual figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

A.E.D., J.L.T., A.S.G., S.A.W. and M.G. conceived the genomic analyses and interpreted results. A.E.D. and J.L.T. collected and analysed the genomic data and A.E.D. produced the corresponding statistical analyses and figures. T.W.S, G.W. and S.A.W. conceived the theoretical modelling and interpreted results. T.W.S. completed the formal theoretical modelling. A.E.D., J.L.T., T.W.S., S.A.W. and M.G. wrote and/or edited the manuscript. A.E.D. wrote and put together Supplementary Sections 1, 2 and 3 and T.W.S. wrote and put together Supplementary Section 4. All authors commented on and approved the manuscript for submission.

Corresponding author

Correspondence to Anna E. Dewar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Ecology & Evolution thanks Isabel Gordo, Alex Washburne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Protein subcellular localizations.

Visualization of all possible subcellular locations predicted by PSORTb. The left panel shows a cross-section of a typical Gram-negative bacterium and the right panel shows the equivalent for a Gram-positive bacterium. Both kinds of bacteria have an inner membrane, known as the cytoplasmic membrane. The main difference is that Gram-positive bacteria are surrounded by a thick layer of a molecule called peptidoglycan, while Gram-negative bacteria have a much thinner layer of peptidoglycan, and have an additional membrane. Created with BioRender.com.

Extended Data Fig. 2 Substantial variation within and between species in the genomic location of extracellular proteins.

The x-axis is the % of genomes in each species where the proportion of plasmid proteins predicted as extracellular is greater than the proportion of chromosome proteins predicted as extracellular. Crucially, this considers only whether the plasmid proportion is greater than the chromosome proportion for each genome, rather than also considering the magnitude of the difference (Fig. 2). Error bars are the 95% Confidence Intervals from a binomial test on each species, comparing the number of genomes which have plasmid proportion > chromosome proportion to a null prediction of 50% of genomes. Species in blue have >50% of genomes where plasmid > chromosome extracellular proportion, meaning extracellular proteins are significantly over-represented on plasmids. Species in red have <50% of genomes where plasmid > chromosome extracellular proportion, meaning extracellular proteins are significantly over-represented on chromosomes. Species in grey have a 95% CI which overlaps 50%, so extracellular proteins are not significantly over-represented on either plasmids or chromosomes in these species.

Extended Data Fig. 3 Difference in plasmid and chromosome proportion for all protein classes predicted by PSORTb.

The x-axis is the difference in plasmid and chromosome extracellular proportions, as in Fig. 2. The y-axis is all possible subcellular locations predicted by PSORTb. These protein ‘classes’ are ordered along the y-axis by location within the cell, from intracellular to increasingly extracellular. Each dot is the posterior mean and 95% Credible Intervals from a MCMCglmm42 on the difference in plasmid and chromosome proportion across all species, accounting for phylogeny and sample size. The only proteins significantly over-represented in either direction are unknown proteins, which make up a higher proportion of plasmid proteins in all species we analysed.

Extended Data Fig. 4 No effect of plasmid mobility on the difference in plasmid and chromosome proportion of genes coding for extracellular proteins.

The x-axis is the % of a species’ plasmids which are conjugative or mobilizable. The y-axis shows the difference in the plasmid and chromosome proportions of genes coding for extracellular proteins, as in Fig. 2. Each dot is the mean for all genomes in a species. Species in blue are those with genes coding for extracellular proteins over-represented on plasmids, while species in red have genes coding for extracellular proteins over-represented on chromosomes.

Extended Data Fig. 5 No difference in where extracellular proteins are coded for in pathogens compared to non-pathogens.

The y-axis shows the difference in the plasmid and chromosome proportion of genes coding for extracellular proteins. Each dot is the mean for all genomes in a species. Species in blue are those with genes coding for extracellular proteins over-represented on plasmids, while species in red have genes coding for extracellular proteins over-represented on chromosomes. Species were categorized as pathogens or non-pathogens; those we could not classify as either are shown in the ‘Opportunistic + others’ category. The black bars indicate the mean for all species in each category.

Extended Data Fig. 6 Additional measures of environmental variability.

We used two additional methods to estimate the environmental variability encountered by these species. (a) The x-axis shows published data on the number of five broad environments each species was recorded in, which we supplemented with information from the literature to include all species. (b) The x-axis shows the proportion of each species’ genes which are ‘core’ genes, meaning they are found in all members of the species. The y-axis in both graphs shows the difference in the proportion of genes on plasmids and chromosomes coding for extracellular proteins. Each dot is the mean for all genomes in a species. Species in blue are those with extracellular proteins over-represented on plasmids, while species in red are those with extracellular proteins over-represented on chromosomes. For both these measures, we found no significant correlation with the genomic location of genes coding for extracellular proteins across species.

Supplementary information

Supplementary Information

Supplementary Genomics Results and Discussion (Section 1), Tables 1–3 (Section 2), Figs. 1–10 (Section 3) and Modelling Methods, Results, Discussion and Figs. 11–14 (Section 4).

Reporting Summary

Peer Review Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewar, A.E., Thomas, J.L., Scott, T.W. et al. Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range. Nat Ecol Evol 5, 1624–1636 (2021). https://doi.org/10.1038/s41559-021-01573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-021-01573-2

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology