Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning

Matters Arising to this article was published on 16 January 2023

Abstract

Earth is home to over 350,000 vascular plant species that differ in their traits in innumerable ways. A key challenge is to predict how natural or anthropogenically driven changes in the identity, abundance and diversity of co-occurring plant species drive important ecosystem-level properties such as biomass production or carbon storage. Here, we analyse the extent to which 42 different ecosystem properties can be predicted by 41 plant traits in 78 experimentally manipulated grassland plots over 10 years. Despite the unprecedented number of traits analysed, the average percentage of variation in ecosystem properties jointly explained was only moderate (32.6%) within individual years, and even much lower (12.7%) across years. Most other studies linking ecosystem properties to plant traits analysed no more than six traits and, when including only six traits in our analysis, the average percentage of variation explained in across-year levels of ecosystem properties dropped to 4.8%. Furthermore, we found on average only 12.2% overlap in significant predictors among ecosystem properties, indicating that a small set of key traits able to explain multiple ecosystem properties does not exist. Our results therefore suggest that there are specific limits to the extent to which traits per se can predict the long-term functional consequences of biodiversity change, so that data on additional drivers, such as interacting abiotic factors, may be required to improve predictions of ecosystem property levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of which and how many traits were typically analysed in other ecosystem functioning-related studies.
Fig. 2: The relative importance of different and multiple traits regarding ecosystem properties across years.
Fig. 3: R2 values of models in which only six traits were analysed to explain ecosystem properties across years.
Fig. 4: The average proportion of variation in levels of ecosystem properties across years explained by plant traits increases asymptotically with the number of traits included in the analysis.

Similar content being viewed by others

Data availability

The datasets analysed for this study, are available at Figshare: https://figshare.com/articles/dataset/Data_and_R_scripts_of_Plant_traits_alone_are_poor_predictors_of_ecosystem_properties_and_long-term_ecosystem_functioning_/12834350.

Code availability

The R scripts used for this study are available at https://github.com/fonsvanderplas/traits-and-ecosystem-properties/.

References

  1. Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant diversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

    Article  CAS  Google Scholar 

  2. Dornelas, M. et al. Assemblage time series reveal biodiversity change but no systematic loss. Science 344, 296–299 (2014).

    Article  CAS  Google Scholar 

  3. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article  CAS  Google Scholar 

  4. McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).

    Article  Google Scholar 

  5. Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

  6. Schroeder-Georgi, T. et al. From pots to plots: hierarchical trait-based prediction of plant performance in a mesic grassland. J. Ecol. 104, 206–218 (2016).

    Article  Google Scholar 

  7. Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Article  Google Scholar 

  8. Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).

    Article  Google Scholar 

  9. McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    Article  Google Scholar 

  10. Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Article  Google Scholar 

  11. Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    Article  CAS  Google Scholar 

  12. Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).

    Article  Google Scholar 

  13. Grigulis, K. et al. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J. Ecol. 101, 47–57 (2013).

    Article  Google Scholar 

  14. Liu, J. et al. Explaining maximum variation in productivity requires phylogenetic diversity and single functional traits. Ecology 96, 176–183 (2015).

    Article  Google Scholar 

  15. Yuan, Z. et al. Multiple metrics of diversity have different effects on temperate forest functioning over succession. Oecologia 182, 1175–1185 (2016).

    Article  Google Scholar 

  16. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  CAS  Google Scholar 

  17. Moles, A. T. & Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006).

    Article  Google Scholar 

  18. Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article  Google Scholar 

  19. Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    Article  CAS  Google Scholar 

  20. Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).

    Article  CAS  Google Scholar 

  21. Butterfield, B. J. & Suding, K. N. Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. J. Ecol. 101, 9–17 (2013).

    Article  Google Scholar 

  22. Gustafsson, C. & Norkko, A. Quantifying the importance of functional traits for primary production in aquatic plant communities. J. Ecol. 107, 154–166 (2018).

    Article  Google Scholar 

  23. Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

    Article  Google Scholar 

  24. Clark, C. M., Flynn, D. F. B., Butterfield, B. J. & Reich, P. B. Testing the link between functional diversity and ecosystem functioning in a Minnesota grassland experiment. PLoS ONE 7, e52821 (2012).

    Article  CAS  Google Scholar 

  25. Flombaum, P. & Sala, O. E. Effects of plant species traits on ecosystem processes: experiments in Patagonian steppe. Ecology 93, 227–234 (2012).

    Article  Google Scholar 

  26. Laliberté, E. & Tylianikis, J. M. Cascading effects of long-term land-use changes on plant traits and ecosystem functioning. Ecology 93, 145–155 (2012).

    Article  Google Scholar 

  27. Lienin, P. & Kleyer, M. Plant trait responses to the environment and effects on ecosystem properties. Basic Appl. Ecol. 13, 301–311 (2012).

    Article  Google Scholar 

  28. Chanteloup, P. & Bonis, A. Functional diversity in root and above-ground traits in a fertile grassland shows a detrimental effect on productivity. Basic Appl. Ecol. 14, 208–216 (2013).

    Article  Google Scholar 

  29. Jiang, J. et al. Litter species traits, but not richness, contribute to carbon and nitrogen dynamics in an alpine meadow on the Tibetan Plateau. Plant Soil 373, 931–941 (2013).

    Article  CAS  Google Scholar 

  30. Lavorel, S. et al. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J. Veg. Sci. 24, 942–948 (2013).

    Article  Google Scholar 

  31. Makkonen, M., Berg, M. P., van Logtestijn, R. S. P., van Hal, J. R. & Aerts, R. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122, 987–997 (2013).

    Article  Google Scholar 

  32. Ziter, C., Bennett, E. M. & Gonzalez, A. Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere 4, 1–21 (2013).

  33. Barrufol, M. et al. Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE 8, e81246 (2014).

    Article  Google Scholar 

  34. Bu, W., Zang, R. & Ding, Y. Field observed relationships between biodiversity and ecosystem functioning during secondary succession in a tropical lowland rainforest. Acta Oecol. (Montrouge) 55, 1–7 (2014).

    Article  Google Scholar 

  35. Carvalho, G. H., Batalha, M. A., Silva, I. A., Cianciaruso, M. V. & Petchey, O. L. Are fire, soil fertility and toxicity, water availability, plant functional diversity, and litter decomposition related in a Neotropical savannah? Oecologia 175, 923–935 (2014).

    Article  Google Scholar 

  36. Cavanaugh, K. C. et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob. Ecol. Biogeogr. 23, 563–573 (2014).

    Article  Google Scholar 

  37. Hantsch, L. et al. No plant functional diversity effects of foliar fungal pathogens in experimental tree communities. Fungal Divers. 66, 139–151 (2014).

    Article  Google Scholar 

  38. Lasky, J. R. et al. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol. Lett. 17, 1158–1167 (2014).

    Article  Google Scholar 

  39. Milcu, A. et al. Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecol. Lett. 17, 435–444 (2014).

    Article  Google Scholar 

  40. Ruiz-Benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. Glob. Ecol. Biogeogr. 23, 311–322 (2014).

    Article  Google Scholar 

  41. Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).

    Article  Google Scholar 

  42. Schuldt, A. et al. Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytol. 202, 864–873 (2014).

    Article  Google Scholar 

  43. Álvarex-Yépiz, J. C. & Dovĉiak, M. Enhancing ecosystem function through conservation: threatened plants increase local carbon storage in tropical dry forests. Trop. Conserv. Sci. 8, 999–1008 (2015).

    Article  Google Scholar 

  44. Debouk, H., de Bello, F. & Sebastià, M.-T. Functional trait changes, productivity shifts and vegetation stability in mountain grasslands during a short-term warming. PLoS ONE 10, e0141899 (2015).

    Article  Google Scholar 

  45. Deraison, H., Badenhausser, I., Loeuille, N., Scherber, C. & Gross, N. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass. Ecol. Lett. 18, 1346–1355 (2015).

    Article  Google Scholar 

  46. Frainer, A., Moretti, M. S., Xu, W. & Gessner, M. O. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology 96, 550–561 (2015).

    Article  Google Scholar 

  47. Haase, J. et al. Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos 124, 1674–1685 (2015).

    Article  Google Scholar 

  48. Kröber, W. et al. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment. Ecol. Evol. 5, 3541–3556 (2015).

    Article  Google Scholar 

  49. Lohbeck, M., Poorter, L., Martínez-Ramos, M. & Bongers, F. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96, 1242–1252 (2015).

    Article  Google Scholar 

  50. Paquette, A., Joly, S. & Messier, C. Explaining forest productivity using tree functional traits and phylogenetic information: two sides of the same coin over evolutionary scale? Ecol. Evol. 5, 1774–1783 (2015).

    Article  Google Scholar 

  51. Rivest, D., Paquette, A., Shipley, B., Reich, P. B. & Messier, C. Tree communities rapidly alter soil microbial resistance and resilience to drought. Funct. Ecol. 29, 570–578 (2015).

    Article  Google Scholar 

  52. Salisbury, C. L. & Potvin, C. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47, 559–568 (2015).

    Article  Google Scholar 

  53. Schwarz, B. et al. Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. Eur. J. Soil Biol. 67, 17–26 (2015).

    Article  Google Scholar 

  54. Tardif, A. & Shipley, B. The relationship between functional dispersion of mixed-leaf litter mixtures and species’ interactions during decomposition. Oikos 124, 1050–1057 (2015).

    Article  Google Scholar 

  55. Valencia, E. et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol. 206, 660–671 (2015).

    Article  Google Scholar 

  56. Van Rooijen, N. M. et al. Plant species diversity mediates ecosystem stability of natural dune grasslands in response to drought. Ecosystems 18, 1383–1394 (2015).

    Article  Google Scholar 

  57. Zhang, Y., Wang, R., Kaplan, D. & Liu, J. Which components of plant diversity are most correlated with ecosystem properties? A case study in a restored wetland in northern China. Ecol. Indic. 49, 228–236 (2015).

    Article  Google Scholar 

  58. Barkaoui, K., Roumet, C. & Volaire, F. Mean root trait more than root trait diversity determines drought resilience in native and cultivated Mediterranean grass mixtures. Agric. Ecosyst. Environ. 231, 122–132 (2016).

    Article  Google Scholar 

  59. Chiang, J.-M. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).

    Article  Google Scholar 

  60. De Vries, F. T. & Bardgett, R. Plant community controls on short-term ecosystem nitrogen retention. New Phytol. 210, 861–874 (2016).

    Article  Google Scholar 

  61. Jewell, M. D. et al. Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos 126, 959–971 (2016).

    Article  Google Scholar 

  62. Lin, D. et al. Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant Soil 409, 435–446 (2016).

    Article  CAS  Google Scholar 

  63. Mason, N. W. H. et al. Leaf economics spectrum-productivity relationships in intensively grazed pastures depend on dominant species identity. Ecol. Evol. 6, 3079–3091 (2016).

    Article  Google Scholar 

  64. Mensah, S., Veldtman, R., Assogbadjo, A. E., Kakaï, R. G. & Seifert, T. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol. Evol. 6, 7546–7557 (2016).

    Article  Google Scholar 

  65. Milcu, A. et al. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modelling approach. Ecology 97, 2044–2054 (2016).

    Article  Google Scholar 

  66. Na, Z., Zhengwen, W., Xinqing, S. & Kun, W. Diversity components and assembly patterns of plant functional traits determine community spatial stability under resource gradients in a desert steppe. Rangel. J. 38, 511–521 (2016).

    Article  Google Scholar 

  67. Ouyang, S. et al. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China. For. Ecol. Manage. 372, 291–302 (2016).

    Article  Google Scholar 

  68. Prado-Junior, J. A. et al. Conservative species drive biomass productivity in tropical dry forests. J. Ecol. 104, 817–827 (2016).

    Article  Google Scholar 

  69. Ratcliffe, S. et al. Modes of functional biodiversity control on tree productivity across the European continent. Glob. Ecol. Biogeogr. 25, 251–262 (2016).

    Article  Google Scholar 

  70. Roscher, C. et al. Convergent high diversity in naturally colonized experimental grasslands is not related to increased productivity. Perspect. Plant Ecol. Evol. Syst. 20, 32–45 (2016).

    Article  Google Scholar 

  71. Spasojevic, M. J. et al. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol. 22, 1421–1432 (2016).

    Article  Google Scholar 

  72. Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).

    Article  Google Scholar 

  73. Wu, J., Wurst, S. & Zhang, X. Plant functional trait diversity regulates the nonlinear response of productivity to regional climate change in Tibetan alpine grasslands. Sci. Rep. 6, 35649 (2016).

    Article  CAS  Google Scholar 

  74. Zhu, J., Jiang, L. & Zhang, Y. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands. Sci. Rep. 6, 34105 (2016).

    Article  CAS  Google Scholar 

  75. Zuo, X. et al. Testing associations of plant functional diversity with carbon and nitrogen storage along a restoration gradient of sandy grassland. Front. Plant Sci. 7, 189 (2016).

    Article  Google Scholar 

  76. Alberti, G. et al. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 120, 160–168 (2017).

    Article  Google Scholar 

  77. Ali, A. & Yan, E.-R. Functional identity of overstorey tree height and understorey conservative traits drive aboveground biomass in a subtropical forest. Ecol. Indic. 83, 158–168 (2017).

    Article  Google Scholar 

  78. Ali, H. E., Reineking, B. & Münkemüller, T. Effects of plant functional traits on soil stability: intraspecific variability matters. Plant Soil 411, 359–375 (2017).

    Article  CAS  Google Scholar 

  79. Barbe, L. et al. Functionally dissimilar neighbors accelerate litter decomposition in two grass species. New Phytol. 214, 1092–1102 (2017).

    Article  Google Scholar 

  80. Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).

    Article  Google Scholar 

  81. Chillo, V., Ojeda, R. A., Capmourteres, V. & Anand, M. Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa. J. Appl. Ecol. 54, 986–996 (2017).

    Article  Google Scholar 

  82. Finney, D. M. & Kaye, J. P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509–517 (2017).

    Article  Google Scholar 

  83. Fornoff, F. et al. Functional flower traits and their diversity drive pollinator visitation. Oikos 126, 1020–1030 (2017).

    Article  CAS  Google Scholar 

  84. Fujii, S. et al. Disentangling relationships between plant diversity and decomposition processes under forest restoration. J. Appl. Ecol. 54, 80–90 (2017).

    Article  Google Scholar 

  85. Grace, J. B., Harrison, S. & Cornell, H. Is biotic resistance enhanced by natural variation in diversity? Oikos 126, 1484–1492 (2017).

    Article  Google Scholar 

  86. Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).

    Article  Google Scholar 

  87. Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).

    Article  Google Scholar 

  88. Henneron, L. et al. Plant interactions as biotic drivers of plasticity in leaf litter traits and decomposability of Quercus petraea. Ecol. Monogr. 87, 321–340 (2017).

    Article  Google Scholar 

  89. Hertzog, L. R., Ebeling, A., Weisser, W. W. & Meyer, S. T. Plant diversity increases predation by ground-dwelling invertebrate predators. Ecosphere 8, e01990 (2017).

    Article  Google Scholar 

  90. Khlifa, R., Paquette, A., Messier, C., Reich, P. B. & Munson, A. D. Do temperate tree species diversity and identity influence soil microbial community function and composition? Ecol. Evol. 7, 7965–7974 (2017).

    Article  Google Scholar 

  91. Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).

    Article  CAS  Google Scholar 

  92. Laird-Hopkins, B. C., Bréchet, L. M., Trujillo, B. C. & Sayer, E. J. Tree functional diversity affects litter decomposition and arthropod community composition in a tropical forest. Biotropica 49, 903–911 (2017).

    Article  Google Scholar 

  93. Li, W. et al. Community-level trait responses and intra-specific trait variability play important roles in driving community productivity in an alpine meadow on the Tibetan Plateau. J. Plant Ecol. 10, 592–600 (2017).

    Google Scholar 

  94. Mao, W., Felton, A. J. & Zhang, T. Linking changes to intraspecific trait diversity to community functional diversity and biomass in response to snow and nitrogen addition within an Inner Mongolian grassland. Front. Plant Sci. 8, 339 (2017).

    Article  Google Scholar 

  95. Meyer, S. T. et al. Consistent increase in herbivory along two experimental plant diversity gradients over multiple years. Ecosphere 8, e01876 (2017).

    Article  Google Scholar 

  96. Mori, A. S., Osono, T., Cornelissen, J. H. C., Craine, J. & Uchida, M. Biodiversity ecosystem function relationships change through primary succession. Oikos 126, 1637–1649 (2017).

    Article  Google Scholar 

  97. Pan, Y. et al. Climatic and geographic factors affect ecosystem multifunctionality through biodiversity in the Tibetan alpine grasslands. J. Mt. Sci. 14, 1604–1614 (2017).

    Article  Google Scholar 

  98. Peco, B., Navarro, E., Carmona, C. P., Medina, N. G. & Marques, M. J. Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits. Agric. Ecosyst. Environ. 249, 215–225 (2017).

    Article  Google Scholar 

  99. Pérez-Ramos, I. M. et al. Climate variability and community stability in Mediterranean shrublands: the role of functional diversity and soil environment. J. Ecol. 105, 1335–1346 (2017).

    Article  Google Scholar 

  100. Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 26, 1423–1434 (2017).

    Article  Google Scholar 

  101. Refsland, T. K. & Fraterrigo, J. M. Both canopy and understory traits act as response–effect traits in fire-managed forests. Ecosphere 8, e02036 (2017).

    Article  Google Scholar 

  102. Sasaki, T. et al. Differential responses and mechanisms of productivity following experimental species loss scenarios. Oecologia 183, 785–795 (2017).

    Article  Google Scholar 

  103. Shihan, A. et al. Changes in soil microbial substrate utilization in response to altered litter diversity and precipitation in a Mediterranean shrubland. Biol. Fertil. Soils 53, 171–185 (2017).

    Article  Google Scholar 

  104. Steinauer, K., Fischer, F. M., Roscher, C., Scheu, S. & Eisenhauer, N. Spatial plant resource acquisition traits explain plant community effects on soil microbial communities. Pedobiologia (Jena) 65, 50–57 (2017).

    Article  Google Scholar 

  105. Sun, Z. et al. Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. J. Plant Ecol. 10, 146–157 (2017).

    Article  Google Scholar 

  106. van der Sande, M. T. et al. Abiotic and biotic drivers of biomass change in a Neotropical forest. J. Ecol. 105, 1223–1234 (2017).

    Article  Google Scholar 

  107. Wei, X., Reich, P. B., Hobbie, S. E. & Kazanski, C. E. Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem. Glob. Change Biol. 23, 4717–4727 (2017).

    Article  Google Scholar 

  108. Zhang, Q. et al. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecol. Evol. 7, 1605–1615 (2017).

    Article  Google Scholar 

  109. Zirbel, C. R., Bassett, T., Grman, E. & Brudvig, L. A. Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. J. Appl. Ecol. 54, 1070–1079 (2017).

    Article  Google Scholar 

  110. Blesh, J. Functional traits in cover crop mixtures: biological nitrogen fixation and multifunctionality. J. Appl. Ecol. 55, 38–48 (2018).

    Article  Google Scholar 

  111. Chillo, V., Vázquez, D. P., Amoroso, M. M. & Bennett, E. M. Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Funct. Ecol. 32, 1390–1399 (2018).

    Article  Google Scholar 

  112. Fu, H. et al. Hydrological gradients and functional diversity of plants drive ecosystem processes on Poyang Lake wetland. Ecohydrology 11, e1950 (2018).

    Article  Google Scholar 

  113. Hao, M., Zhang, C., Zhao, X. & von Gadow, K. Functional and phylogenetic diversity determine wood productivity in temperate forest. Ecol. Evol. 8, 2395–2406 (2018).

    Article  Google Scholar 

  114. Mori, A. S. Environmental controls on the causes and functional consequences of tree species diversity. J. Ecol. 106, 113–125 (2018).

    Article  Google Scholar 

  115. Navarro-Cano, J. A., Verdú, M. & Goberna, M. Trait-based selection of nurse plants to restore ecosystem functions in mine tailings. J. Appl. Ecol. 55, 1195–1206 (2018).

    Article  Google Scholar 

  116. Orwin, K. H. et al. Season and dominant species effects on plant trait–ecosystem function relationships in intensively grazed grassland. J. Appl. Ecol. 55, 236–245 (2018).

    Article  Google Scholar 

  117. Roscher, C. et al. Origin context of trait data matters for predictions of community performance of a grassland biodiversity experiment. Ecology 99, 1214–1226 (2018).

    Article  Google Scholar 

  118. Van de Peer, T., Verheyen, K., Ponette, Q., Setiawan, N. N. & Muys, B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J. Ecol. 106, 1096–1105 (2018).

    Article  Google Scholar 

  119. Xie, G., Lundholm, J. T. & MacIvor, J. S. Phylogenetic diversity and plant trait composition predict multiple ecosystem functions in green roofs. J. Total Environ. 628–629, 1017–1026 (2018).

    Article  Google Scholar 

  120. Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).

    Article  CAS  Google Scholar 

  121. Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).

    Article  Google Scholar 

  122. Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).

    Article  Google Scholar 

  123. Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Article  Google Scholar 

  124. Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540 (2005).

    Article  Google Scholar 

  125. Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).

    Article  Google Scholar 

  126. van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    Google Scholar 

  127. Sørenson, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K. Dan. Vid. Selsk. 5, 1–34 (1948).

    Google Scholar 

  128. Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–191 (2007).

    Article  CAS  Google Scholar 

  129. Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).

    Article  Google Scholar 

  130. Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2017).

    Article  Google Scholar 

  131. Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol. Rev. 94, 648–661 (2019).

    Article  Google Scholar 

  132. Roscher, C. et al. Interspecific trait differences rather than intraspecific trait variation increase the extent and filling of plant community space with increasing plant diversity in experimental grasslands. Perspect. Plant Ecol. Evol. Syst. 33, 42–50 (2018).

    Article  Google Scholar 

  133. Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).

    Article  Google Scholar 

  134. Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Global quantitative synthesis of ecosystem functioning across climatic zones and ecosystem types. Glob. Ecol. Biogeogr. 29, 1139–1176 (2020).

  135. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article  Google Scholar 

  136. Reich, P. B. et al. Relationship of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114, 471–482 (1998).

    Article  Google Scholar 

  137. Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).

    Article  Google Scholar 

  138. Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).

    Article  Google Scholar 

  139. Millenium Ecosystem Assessment Ecosystems and Human Well-being: Synthesis (Island Press, 2005).

  140. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  141. Garnier, E. et al. Towards a thesaurus of plant characteristics: an ecological contribution. J. Ecol. 105, 298–309 (2016).

    Article  Google Scholar 

  142. Ellenberg, H. Vegetation Mitteleuropas mit den Alpen. In ökologischer, dynamischer und historischer Sicht 5th edn (Ulmer, 1996).

  143. Jochum, M. et al. The results of biodiversity-ecosystem functioning experiments are realistic. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1280-9 (2020).

  144. de Groot, R., Wilson, M. & Boumans, R. A typology for the classification description and valuation of ecosystem functions, goods and services. Ecol. Econ. 41, 393–408 (2002).

    Article  Google Scholar 

  145. Gotschall, F. et al. Tree species identity determines wood decomposition via microclimatic effects. Ecol. Evol. 9, 12113–12127 (2019).

    Article  Google Scholar 

  146. Salamanca, F., Kaneko, N. & Katagiri, S. Rainfall manipulation effects on litter decomposition and the microbial biomass of the forest floor. Appl. Soil Ecol. 22, 271–281 (2003).

    Article  Google Scholar 

  147. Hu, W. et al. Nitrogen along the hydrological gradient of marsh sediments in a subtropical estuary: pools, processes and fluxes. Int. J. Environ. Res. Public Health 16, 2043 (2019).

    Article  CAS  Google Scholar 

  148. Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

  149. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  150. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article  Google Scholar 

  151. Bartón, K. Package ‘MuMIn’. Model selection and model averaging based on information criteria. R package version 3.0.2. (2018); https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

  152. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank E. de Luca, A. Vogel, H. Hillebrand and E. Marquard for their contributions to data collection. The Jena Experiment is funded by the German Science Foundation (no. DFG Oe516/3-1, 3-2, 10-1). We also thank C. Krause and the UFZ administrative and support staff of the High-Performance Computing Cluster EVE, a joint effort of the Helmholtz Centre for Environmental Research and iDiv, for access to EVE.

Author information

Authors and Affiliations

Authors

Contributions

F.v.d.P., C.W., T.S.-G., A.W. and K.B. conceived the ideas and designed the study. F.v.d.P., T.S.-G., S.M. and A.A. performed analyses. T.S.-G., A.W., K.B., S.M., R.L.B., N.B., H.d.K., A.E., N.E., C.E., M.F., G.G., A.H., E.K.-F., S.L., A.M., L.M., P.A.N., Y.O., C.R., C.S., M.S.-L., S.S., B.S., E.-D.S., V.T., T.T., W.V., W. Weisser, W. Wilcke and C.W. contributed to data collection. F.v.d.P. wrote a first draft of the paper, and all other authors contributed to editing several manuscript versions.

Corresponding author

Correspondence to Fons van der Plas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 A PRISMA flowchart of the literature research.

Our literature search yielded 654 publications, of which 476 were screened, and 129 full-text articles were assessed for eligibility. Of these, 100 were eligible and included in our synthesis.

Supplementary information

Supplementary Information

Supplementary Methods, including Tables 1–3; and Results, including Tables 5 and 6.

Reporting Summary

Supplementary Data 1

Overview of studies included in the literature review.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Plas, F., Schröder-Georgi, T., Weigelt, A. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat Ecol Evol 4, 1602–1611 (2020). https://doi.org/10.1038/s41559-020-01316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01316-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing