Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Entropy-driven charge-transfer complexation yields thermally activated delayed fluorescence and highly efficient OLEDs

An Author Correction to this article was published on 05 March 2024

This article has been updated

Abstract

Exciplex-forming systems that display thermally activated delayed fluorescence are widely used for fabricating organic light-emitting diodes. However, their further development can be hindered through a lack of structural and thermodynamic characterization. Here we report the generation of inclusion complexes between a cage-like, macrocyclic, electron-accepting host (A) and various N-methyl-indolocarbazole-based electron-donating guests (D), which exhibit exciplex-like thermally activated delayed fluorescence via a through-space electron-transfer process. The D/A cocrystals are fully resolved by X-ray analyses, and UV–visible titration data show their formation to be an endothermic and entropy-driven process. Moreover, their emission can be fine-tuned through the molecular orbitals of the donor. Organic light-emitting diodes were fabricated using one of the D/A systems, and the maximum external quantum efficiency measured was 15.2%. An external quantum efficiency of 10.3% was maintained under a luminance of 1,000 cd m–2. The results show the potential of adopting inclusion complexation to better understand the relationships between the structure, formation thermodynamics and properties of exciplexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures, synthetic route and X-ray crystal structures.
Fig. 2: Thermodynamics of the complexation between TrMe and Trz-cage.
Fig. 3: TADF properties and the various rate constants of TrMe@Trz-cage.
Fig. 4: Transition properties of TrMe@Trz-cage and emission properties of the various complexes.
Fig. 5: OLED device performances based on TrMe@Trz-cage as an emitter.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2245430 (Trz-cage), CCDC 2245433 (TrMe@Trz-cage), CCDC 2245431 (ICzMeCN@Trz-cage), CCDC 2245434 (ICzMe@Trz-cage) and CCDC 2245432 (ICzMeOMe@Trz-cage). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures. All data are available in this Article and its Supplementary Information. Source data are provided with this paper.

Change history

References

  1. Endo, A. et al. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes — a novel mechanism for electroluminescence. Adv. Mater. 21, 4802–4806 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Hatakeyama, T. et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO–LUMO separation by the multiple resonance effect. Adv. Mater. 28, 2777–2781 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Lv, X. et al. Extending the π‐skeleton of multi‐resonance TADF materials towards high‐efficiency narrowband deep‐blue emission. Angew. Chem. Int. Ed. 134, e202201588 (2022).

    Article  ADS  Google Scholar 

  5. Wu, X. et al. Fabrication of circularly polarized MR‐TADF emitters with asymmetrical peripheral‐lock enhancing helical B/N‐doped nanographenes. Adv. Mater. 34, 2105080 (2022).

    Article  CAS  Google Scholar 

  6. Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photon. 6, 253–258 (2012).

    Article  ADS  CAS  Google Scholar 

  7. Liu, X. K. et al. Prediction and design of efficient exciplex emitters for high‐efficiency, thermally activated delayed‐fluorescence organic light‐emitting diodes. Adv. Mater. 27, 2378–2383 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Hung, W.-Y. et al. Highly efficient bilayer interface exciplex for yellow organic light-emitting diode. ACS Appl. Mater. Interfaces 5, 6826–6831 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Sarma, M. & Wong, K.-T. Exciplex: an intermolecular charge-transfer approach for TADF. ACS Appl. Mater. Interfaces 10, 19279–19304 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, W. et al. Novel strategy to develop exciplex emitters for high‐performance OLEDs by employing thermally activated delayed fluorescence materials. Adv. Funct. Mater. 26, 2002–2008 (2016).

    Article  ADS  CAS  Google Scholar 

  11. Zhang, D. et al. Simultaneous enhancement of efficiency and stability of phosphorescent OLEDs based on efficient Forster energy transfer from interface exciplex. ACS Appl. Mater. Interfaces 8, 3825–3832 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, T.-C. et al. Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes. Nat. Commun. 9, 3111 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Chen, L. et al. A donor–acceptor cage for thermally activated delayed fluorescence: toward a new kind of TADF exciplex emitters. ACS Mater. Lett. 5, 1450–1455 (2023).

    Article  CAS  Google Scholar 

  14. Zhou, J. & Ritter, H. Cyclodextrin functionalized polymers as drug delivery systems. Polym. Chem. 1, 1552–1559 (2010).

    Article  CAS  Google Scholar 

  15. Bakirci, H. & Nau, W. M. Fluorescence regeneration as a signaling principle for choline and carnitine binding: a refined supramolecular sensor system based on a fluorescent azoalkane. Adv. Funct. Mater. 16, 237–242 (2006).

    Article  CAS  Google Scholar 

  16. Roy, I. et al. Host–guest complexation-mediated supramolecular photon upconversion. J. Am. Chem. Soc. 142, 16600–16609 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Jiao, Y. et al. A donor–acceptor [2]catenane for visible light photocatalysis. J. Am. Chem. Soc. 143, 8000–8010 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Ye, Z. et al. Long-lived emissive hydrogen-bonded macrocycles: donors regulating room-temperature phosphorescence and thermally activated delayed fluorescence. Adv. Opt. Mater. 11, 2202521 (2023).

    Article  CAS  Google Scholar 

  19. Zhou, H. Y., Zhang, D. W., Li, M. & Chen, C. F. A calix[3]acridan‐based host–guest cocrystal exhibiting efficient thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 134, e202117872 (2022).

    Article  ADS  Google Scholar 

  20. Samanta, J. & Natarajan, R. Cofacial organic click cage to intercalate polycyclic aromatic hydrocarbons. Org. Lett. 18, 3394–3397 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, X.-Y. et al. Suit[3]ane. J. Am. Chem. Soc. 142, 20152–20160 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Hafezi, N. et al. Modulating the binding of polycyclic aromatic hydrocarbons inside a hexacationic cage by anion–π interactions. Angew. Chem. Int. Ed. 54, 456–461 (2015).

    Article  CAS  Google Scholar 

  23. Dale, E. J. et al. ExCage. J. Am. Chem. Soc. 136, 10669–10682 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Fujiwara, H., Arakawa, H., Murata, S. & Sasaki, Y. Entropy changes in the inclusion complex formation of α-cyclodextrin with alcohols as studied by the titration calorimetry. Bull. Chem. Soc. Jpn 60, 3891–3894 (1987).

    Article  CAS  Google Scholar 

  25. Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 21, 3885–3896 (2000).

    Article  Google Scholar 

  26. Nishio, M. CH/π hydrogen bonds in crystals. CrystEngComm 6, 130–158 (2004).

    Article  CAS  Google Scholar 

  27. Benesi, H. A. & Hildebrand, J. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949).

    Article  CAS  Google Scholar 

  28. Tang, X. et al. Highly efficient luminescence from space-confined charge-transfer emitters. Nat. Mater. 19, 1332–1338 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Wada, Y., Nakagawa, H., Matsumoto, S., Wakisaka, Y. & Kaji, H. Organic light emitters exhibiting very fast reverse intersystem crossing. Nat. Photon. 14, 643–649 (2020).

    Article  ADS  CAS  Google Scholar 

  30. Song, Y., Tian, M., Yu, R. & He, L. Through-space charge-transfer emitters developed by fixing the acceptor for high-efficiency thermally activated delayed fluorescence. ACS Appl. Mater. Interfaces 13, 60269–60278 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, X. Q. et al. Multi‐layer π‐stacked molecules as efficient thermally activated delayed fluorescence emitters. Angew. Chem. Int. Ed. 60, 5213–5219 (2021).

    Article  CAS  Google Scholar 

  32. Lin, J.-A. et al. Bending-type electron donor–donor–acceptor triad: dual excited-state charge-transfer coupled structural relaxation. Chem. Mater. 31, 5981–5992 (2019).

    Article  ADS  CAS  Google Scholar 

  33. Stauffer, D. A., Barrans, R. E. Jr & Dougherty, D. A. Concerning the thermodynamics of molecular recognition in aqueous and organic media. Evidence for significant heat capacity effects. J. Org. Chem. 55, 2762–2767 (1990).

    Article  CAS  Google Scholar 

  34. Clarke, E. & Glew, D. Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc. 62, 539–547 (1966).

    Article  CAS  Google Scholar 

  35. Biedermann, F., Nau, W. M. & Schneider, H. J. The hydrophobic effect revisited—studies with supramolecular complexes imply high‐energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53, 11158–11171 (2014).

    Article  CAS  Google Scholar 

  36. Castronuovo, G., Elia, V., Iannone, A., Niccoli, M. & Velleca, F. Factors determining the formation of complexes between α-cyclodextrin and alkylated substances in aqueous solutions: a calorimetric study at 25 °C. Carbohydr. Res. 325, 278–286 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Park, J. W. & Song, H. J. Association of anionic surfactants with β-cyclodextrin. Fluorescence-probed studies on the 1:1 and 1:2 complexation. J. Phys. Chem. 93, 6454–6458 (1989).

    Article  CAS  Google Scholar 

  38. Harrison, J. C. & Eftink, M. R. Cyclodextrin–adamantanecarboxylate inclusion complexes: a model system for the hydrophobic effect. Biopolym. Orig. Res. Biomol. 21, 1153–1166 (1982).

    CAS  Google Scholar 

  39. Liu, L. & Guo, Q.-X. The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 42, 1–14 (2002).

    Article  CAS  Google Scholar 

  40. Smithrud, D. B. & Diederich, F. Strength of molecular complexation of apolar solutes in water and in organic solvents is predictable by linear free energy relationships: a general model for solvation effects on apolar binding. J. Am. Chem. Soc. 112, 339–343 (1990).

    Article  CAS  Google Scholar 

  41. Yang, L., Adam, C. & Cockroft, S. L. Quantifying solvophobic effects in nonpolar cohesive interactions. J. Am. Chem. Soc. 137, 10084–10087 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Cubberley, M. S. & Iverson, B. L. 1H NMR investigation of solvent effects in aromatic stacking interactions. J. Am. Chem. Soc. 123, 7560–7563 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Berberan-Santos, M. N. & Garcia, J. M. Unusually strong delayed fluorescence of C70. J. Am. Chem. Soc. 118, 9391–9394 (1996).

    Article  CAS  Google Scholar 

  44. Strickler, S. & Berg, R. A. Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–822 (1962).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

C.-Y.L. thanks C.-W. Chiu, M.-T. Hsu, Y.-H. Chang, L.-M. Chen, Y.-S. Chen and K.-H. Kuo for their discussions on variable-temperature NMR and photophysical data. We are grateful to the National Centre for High-Performance Computing (NCHC) of Taiwan for valuable computer time and facilities. We acknowledge the Instrumentation Centre, National Taiwan University for the use of their facilities. We thank S.-J. Huang of the Instrumentation Centre for assistance with the 600 MHz solid-state NMR experiments. We thank H.-C. Tseng of the Instrumentation Centre for assistance with the variable-temperature NMR and one-dimensional selective TOCSY experiments. We also thank the mass spectrometry technical research services from the NTU Consortia of Key Technologies for the assistance with matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy and electrospray ionization time-of-flight mass spectroscopy. We acknowledge Y.-Y. Yang of the Instrumentation Centre for the assistance in the scanning electron microscope analyses. K.-T.W. thanks the National Science and Technology Council (grant nos NSTC-110-2113-M-002-008-MY3 and NSTC-111-2113-M-002-026), and P.-T.C. thanks the National Science and Technology Council (grant no. NSTC-111-2639-M-002-005-ASP) for gracious support.

Author information

Authors and Affiliations

Authors

Contributions

C.-Y.L., Y.-C.H. and K.-T.W. designed and executed the synthesis and characterization of all studied compounds and grew the corresponding cocrystals. Y.-H.L. resolved all the single-crystal structures. C.-H.H., C.-C.W., E.H.-C.S. and P.-T.C. conducted optical measurements and theoretical derivations. C.-M.H., T.-H.L. and W.-Y.H. executed OLED fabrications and analysed the data. C.-Y.L., C.-H.H., C.-M.H., C.-C.W., W.-Y.H., K.-T.W. and P.-T.C. cowrote the paper. All authors discussed the results and contributed to the paper.

Corresponding authors

Correspondence to Ken-Tsung Wong or Pi-Tai Chou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Chihaya Adachi, Hironori Kaji, Marc Little and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–37, Tables 1–12 and details of synthetic procedures, crystallographic analysis, spectroscopy data, computation analysis and OLED device characterization.

Supplementary Data 1

Crystal structure of Trz-cage; CCDC 2245430.

Supplementary Data 2

Crystal structure of TrMe@Trz-cage; CCDC 2245433.

Supplementary Data 3

Crystal structure of ICzMeCN@Trz-cage; CCDC 2245431.

Supplementary Data 4

Crystal structure of ICzMe@Trz-cage; CCDC 2245434.

Supplementary Data 5

Crystal structure of ICzMeOMe@Trz-cage; CCDC 2245432.

Source data

Source Data Fig. 2

Steady-state absorption and photoluminescence spectra, Benesi–Hildebrand plot, and van’t Hoff plot.

Source Data Fig. 3

Time-correlated single-photon counting emission spectra.

Source Data Fig. 4

Absorption and emission spectra.

Source Data Fig. 5

EL spectra, current and luminance versus voltage curves, and EQE and power efficiency versus current density curves.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CY., Hsu, CH., Hung, CM. et al. Entropy-driven charge-transfer complexation yields thermally activated delayed fluorescence and highly efficient OLEDs. Nat. Chem. 16, 98–106 (2024). https://doi.org/10.1038/s41557-023-01357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01357-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing