Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanochemical synthesis of an elusive fluorinated polyacetylene

Abstract

Polymer mechanochemistry has traditionally been employed to study the effects of mechanical force on chemical bonds within a polymer backbone or to generate force-responsive materials. It is under-exploited for the scalable synthesis of wholly new materials by chemically transforming the polymers, especially products inaccessible by other means. Here we utilize polymer mechanochemistry to synthesize a fluorinated polyacetylene, a long-sought-after air-stable polyacetylene that has eluded synthesis by conventional means. We construct the monomer in four chemical steps on gram scale, which involves a rapid incorporation of fluorine atoms in an exotic photochemical cascade whose mechanism and exquisite stereoselectivity were informed by computation. After polymerization, force activation by ultrasonication produces a gold-coloured, semiconducting fluoropolymer. This work demonstrates that polymer mechanochemistry is a valuable synthetic tool for accessing materials on a preparative scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Accessing polyenes from ladderene polymers requires force activation and enables the synthesis of a fluorinated polyacetylene.
Fig. 2: Synthesis of a fluoroladderene monomer and a computational description of the fluoroladderene extension mechanism using a model system.
Fig. 3: Synthesis of gold-coloured F-PA 18 and characterization, showing a semiconducting polymer with improved air stability relative to PA.
Fig. 4: Mechanochemical activation of polymer 19 produces a pentaene fine structure.

Similar content being viewed by others

Data availability

Experimental data and characterization data for all new compounds prepared in the course of these studies are provided in the Supplementary Information of this manuscript. The X-ray crystallographic coordinates for compounds 13, S3, S6 and 16 have been deposited at the Cambridge Crystallographic Data Center (CCDC) with accession codes 2036390 (13), 2036388 (S3), 2036389 (S6) and 2036391 (16). These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/structures/. The computational geometries obtained and used in Fig. 2 and in Supplementary Sections 18 and 19 are provided as .xyz files in the Supplementary Data.

References

  1. Li, J., Nagamani, C. & Moore, J. S. Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 48, 2181–2190 (2015).

    Article  CAS  Google Scholar 

  2. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    Article  CAS  Google Scholar 

  3. Ribas-Arino, J. & Marx, D. Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem. Rev. 112, 5412–5487 (2012).

    Article  CAS  Google Scholar 

  4. Howard, J. L., Cao, Q. & Browne, D. L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem. Sci. 9, 3080–3094 (2018).

    Article  CAS  Google Scholar 

  5. Tan, D. & Friščić, T. Mechanochemistry for organic chemists: an update. Eur. J. Org. Chem. 2018, 18–33 (2018).

    Article  CAS  Google Scholar 

  6. Shirakawa, H., Ito, T. & Ikeda, S. Electrical properties of polyacetylene with various cistrans compositions. Makromol. Chem. 179, 1565–1573 (1978).

    Article  CAS  Google Scholar 

  7. Edwards, J. H. & Feast, W. J. A new synthesis of poly(acetylene). Polymer 21, 595–596 (1980).

    Article  CAS  Google Scholar 

  8. Saxman, A. M., Liepins, R. & Aldissi, M. Polyacetylene: its synthesis, doping and structure. Prog. Polym. Sci. 11, 57–89 (1985).

    Article  CAS  Google Scholar 

  9. Yamabe, T. et al. The electronic structures of fluorinated polyacetylenes. A design of new organic polymer alternatives to polyacetylene. Synth. Met 1, 321–327 (1979).

    Article  Google Scholar 

  10. Springborg, M. Structural and electronic properties of fluorinated and chlorinated polyacetylene. J. Am. Chem. Soc. 121, 11211–11216 (1999).

    Article  CAS  Google Scholar 

  11. Dixon, D. A. & Smart, B. E. The effect of fluorination on polyacetylene and the role of internal hydrogen bonds to fluorine. ACS Symp. Ser. 456, 18–35 (1991).

    Article  CAS  Google Scholar 

  12. Abreu, L. M., Fonseca, T. L. & Castro, M. A. Electron correlation effects on the electric properties of fluorinated polyacetylene. J. Chem. Phys. 136, 234311 (2012).

    Article  CAS  Google Scholar 

  13. Middleton, W. J. & Sharkey, W. H. Fluoroacetylene. J. Am. Chem. Soc. 81, 803–804 (1959).

    Article  CAS  Google Scholar 

  14. Gould, G. L., Eswara, V., Trifu, R. M. & Castner, D. G. Polydifluoroacetylene, polychlorofluoroacetylene and polydichloroacetylene. J. Am. Chem. Soc. 121, 3781–3782 (1999).

    Article  CAS  Google Scholar 

  15. Chen, Z. et al. Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 357, 475–479 (2017).

    Article  CAS  Google Scholar 

  16. Chen, Z. et al. The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry. Nat. Chem. 12, 302–309 (2020).

    Article  CAS  Google Scholar 

  17. Yang, J. et al. Benzoladderene mechanophores: synthesis, polymerization and mechanochemical transformation. J. Am. Chem. Soc. 141, 6479–6483 (2019).

    Article  CAS  Google Scholar 

  18. Bryce-Smith, D., Gilbert, A. & Orger, B. H. Photoadditon of cis-cyclo-octene to hexafluorobenzene. J. Chem Soc. D Chem. Commun. 1969, 800b–802 (1969).

    Article  Google Scholar 

  19. Šket, B., Zupančič, N. & Zupan, M. Photochemistry of organo-halogenic molecules. Part 20. The effect of cycloalkene structure on the [2+2] photocycloaddition to hexafluorobenzene. J. Chem. Soc. Perkin Trans. 1, 981–985 (1987).

    Article  Google Scholar 

  20. Zupan, M. & Šket, B. Photochemistry of fluorosubstituted aromatic and heteroaromatic molecules. Israel J. Chem. 17, 92–99 (1978).

    Article  CAS  Google Scholar 

  21. Lemal, D. M. Hexafluorobenzene photochemistry: wellspring of fluorocarbon structures. Acc. Chem. Res. 34, 663–671 (2001).

    Article  Google Scholar 

  22. Case, R. J., Dewar, M. J., Kirschner, S., Pettit, R. & Slegier, W. Possible intervention of triplet states in thermal reactions of hydrocarbons. Rearrangements of cyclobutadiene dimers and analogous compounds. J. Am. Chem. Soc. 96, 7581–7582 (1974).

    Article  CAS  Google Scholar 

  23. Avram, M. et al. Untersuchungen in der Cyclobutanreihe, XI. Über die stereoisomeren Cyclooctatetraen-dichloride und das cis-3.4-Dichlor-cyclobuten. Chem. Ber. 97, 382–389 (1964).

    Article  CAS  Google Scholar 

  24. Mercer, J. A. M. et al. Chemical synthesis and self-assembly of a ladderane phospholipid. J. Am. Chem. Soc. 138, 15845–15848 (2016).

    Article  CAS  Google Scholar 

  25. Garavelli, M. Computational Organic Photochemistry: Strategy, Achievements and Perspectives (Springer, 2006).

  26. Cox, J. M. & Lopez, S. A. Multiconfigurational dynamics explain photochemical reactivity and torquoselectivity towards fluorinated polyacetylene. J. Mater. Chem. C 8, 10880–10888 (2020).

    Article  CAS  Google Scholar 

  27. Brundle, C. R., Robin, M. B., Kuebler, N. A. & Basch, H. Perfluoro effect in photoelectron spectroscopy. I. Nonaromatic molecules. J. Am. Chem. Soc. 94, 1451–1465 (1972).

    Article  CAS  Google Scholar 

  28. Grubbs, R. H. & Khosravi, E. Handbook of Metathesis, Volume 3: Polymer Synthesis 2nd edn (Wiley-VCH, 2015).

  29. Wang, J.-J. & Chen, S.-N. Cyclic voltammetric studies on the electrode reaction of polyacetylene secondary cell. J. Chin. Chem. Soc. 36, 515–522 (1989).

    Article  CAS  Google Scholar 

  30. Spangler, C. W. & Little, D. A. Synthesis and characterization of representative octa-1,3,5,7-tetraenes and deca-1,3,5,7,9-pentaenes. J. Chem. Soc. Perkin Trans. 1, 2379–2385 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (DARPA-SN-18-47), the Office of Naval Research (N00014-17-S-F006) and the Center for Molecular Analysis and Design at Stanford (graduate fellowship for B.R.B.). Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation (ECCS-1542152). Y.X. acknowledges support from the US Army Research Office (W911NF-15-1-0525). L.C. acknowledges support from the National Science Foundation (Awards 453247 and 2001189). Y. Jiang and Z. Bao (Stanford University) are acknowledged for assistance with conductivity experiments.

Author information

Authors and Affiliations

Authors

Contributions

B.R.B., Y.X. and N.Z.B. conceived the work and designed the experiments. B.R.B. and C.M.F.M. carried out the synthesis experiments. B.R.B. and K.P.L. carried out X-ray photoelectron spectroscopy studies. B.R.B. and Z.J. carried out cyclic voltammetry studies. J.A.H.R. and L.C. designed and carried out solid-state NMR experiments and analysed the data. J.M.C. and S.A.L. designed and performed computations and analysed the data. B.R.B., N.Z.B., J.M.C. and S.A.L. wrote the manuscript. C.M.F.M. and Y.X. assisted in writing and editing the manuscript.

Corresponding authors

Correspondence to Yan Xia, Steven A. Lopez or Noah Z. Burns.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Synthetic details and material characterization, Supplementary Figs. 1–58 and Tables 1–3.

Supplementary Data 1

xyz files for computed structures in Fig. 2b.

Supplementary Data 2

xyz files for each point in the computed surface in Supplementary Fig. 57.

Supplementary Data 3

Crystallographic data (CIF) for compound S6; CCDC reference: 2036389.

Supplementary Data 4

Crystallographic data (CIF) for compound 16; CCDC reference: 2036391.

Supplementary Data 5

Crystallographic data (CIF) for compound 13; CCDC reference: 2036390.

Supplementary Data 6

Crystallographic data (CIF) for compound S3; CCDC reference: 2036388.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boswell, B.R., Mansson, C.M.F., Cox, J.M. et al. Mechanochemical synthesis of an elusive fluorinated polyacetylene. Nat. Chem. 13, 41–46 (2021). https://doi.org/10.1038/s41557-020-00608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00608-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing