Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Super-resolution labelling with Action-PAINT

This article has been updated

Abstract

Recent advances in localization-based super-resolution microscopy have enabled researchers to visualize single molecular features down to individual molecular components (~5 nm), but do not yet allow manipulation of single-molecule targets in a user-prescribed, context-dependent manner. Here we report an ‘Action-PAINT’ (PAINT, point accumulation for imaging in nanoscale topography) strategy for super-resolution labelling upon visualization on single molecules. This approach monitors and localizes DNA binding events in real time with DNA-PAINT, and upon visualization of binding to a desired location, photo-crosslinks the DNA to affix the molecular label. We showed the efficiency of 3-cyanovinylcarbazole nucleoside photo-inducible crosslinking on single molecular targets and developed a software package for real-time super-resolution imaging and crosslinking control. We then benchmarked our super-resolution labelling method on synthetic DNA nanostructures and demonstrated targeted multipoint labelling on various complex patterns with 30 nm selectivity. Finally, we performed targeted in situ labelling on fixed microtubule samples with a 40 nm target size and custom-controlled, subdiffraction spacing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of super-resolution single-molecule labelling.
Fig. 2: Crosslinking efficiency test and targeted single-molecule labelling.
Fig. 3: Multipoint super-resolution patterning.
Fig. 4: In situ super-resolution labelling on microtubules.

Similar content being viewed by others

Data availability

Datasets generated during the study are available from the corresponding authors upon request.

Code availability

Custom computer programs used during the study are available from the corresponding authors upon request.

Change history

  • 01 October 2019

    In this Article originally published, the ORCID number for the author Mingjie Dai was missing; it should have been 0000-0002-8665-4966. This has now been corrected in all versions of the Article.

References

  1. Sahl, S. J. & Moerner, W. Super-resolution fluorescence imaging with single molecules. Curr. Opin. Struc. Biol. 23, 778–787 (2013).

    Article  CAS  Google Scholar 

  2. Sydor, A. M., Czymmek, K. J., Puchner, E. M. & Mennella, V. Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol. 25, 730–748 (2015).

    Article  CAS  Google Scholar 

  3. Eggeling, C., Willig, K. I., Sahl, S. J. & Hell, S. W. Lens-based fluorescence nanoscopy. Q. Rev. Biophys. 48, 178–243 (2015).

    Article  CAS  Google Scholar 

  4. Sanders, D. P. Advances in patterning materials for 193 nm immersion lithography. Chem. Rev. 110, 321–360 (2010).

    Article  CAS  Google Scholar 

  5. Cohen, A. E. Optogenetics: turning the microscope on its head. Biophys. J. 110, 997–1003 (2016).

    Article  CAS  Google Scholar 

  6. Ando, T., Uchihashi, T. & Scheuring, S. Filming biomolecular processes by high-speed atomic force microscopy. Chem. Rev. 114, 3120–3188 (2014).

    Article  CAS  Google Scholar 

  7. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  8. Heilemann, M. et al. Subdiffraction‐resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    Article  CAS  Google Scholar 

  9. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  10. Hess, S. T., Girirajan, T. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  Google Scholar 

  11. Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).

    Article  CAS  Google Scholar 

  12. Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10, 4756–4761 (2010).

    Article  CAS  Google Scholar 

  13. Löschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125, 570–575 (2012).

    Article  Google Scholar 

  14. Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013).

    Article  CAS  Google Scholar 

  15. Pertsinidis, A. et al. Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ. Proc. Natl Acad. Sci. USA 110, E2812–E2820 (2013).

    Article  CAS  Google Scholar 

  16. Huang, F. et al. Ultra-high resolution 3D imaging of whole cells. Cell 166, 1028–1040 (2016).

    Article  CAS  Google Scholar 

  17. Kaplan, C. et al. Absolute arrangement of subunits in cytoskeletal septin filaments in cells measured by fluorescence microscopy. Nano Lett. 15, 3859–3864 (2015).

    Article  CAS  Google Scholar 

  18. Mikhaylova, M. et al. Resolving bundled microtubules using anti-tubulin nanobodies. Nat. Commun. 6, 7933 (2015).

    Article  CAS  Google Scholar 

  19. Dai, M., Jungmann, R. & Yin, P. Optical imaging of individual biomolecules in densely packed clusters. Nat. Nanotechnol. 11, 798–807 (2016).

    Article  CAS  Google Scholar 

  20. Raab, M., Schmied, J. J., Jusuk, I., Forthmann, C. & Tinnefeld, P. Fluorescence microscopy with 6 nm resolution on DNA origami. Chemphyschem 15, 2431–2435 (2014).

    Article  CAS  Google Scholar 

  21. Rittweger, E., Han, K., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photon. 3, 144–147 (2009).

    Article  CAS  Google Scholar 

  22. Giannone, G. et al. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J. 99, 1303–1310 (2010).

    Article  CAS  Google Scholar 

  23. Schoen, I., Ries, J., Klotzsch, E., Ewers, H. & Vogel, V. Binding-activated localization microscopy of DNA structures. Nano Lett. 11, 4008–4011 (2011).

    Article  CAS  Google Scholar 

  24. Kiuchi, T., Higuchi, M., Takamura, A., Maruoka, M. & Watanabe, N. Multitarget super-resolution microscopy with high-density labeling by exchangeable probes. Nat. Methods 12, 743–746 (2015).

    Article  CAS  Google Scholar 

  25. Barish, R. & Yin, P. Methods and compositions relating to optical super-resolution patterning. US patent 10,041,108 (2018).

  26. Yoshimura, Y. & Fujimoto, K. Ultrafast reversible photo-cross-linking reaction: toward in situ DNA manipulation. Org. Lett. 10, 3227–3230 (2008).

    Article  CAS  Google Scholar 

  27. Vieregg, J. R., Nelson, H. M., Stoltz, B. M. & Pierce, N. A. Selective nucleic acid capture with shielded covalent probes. J. Am. Chem. Soc. 135, 9691–9699 (2013).

    Article  CAS  Google Scholar 

  28. Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).

    Article  CAS  Google Scholar 

  29. Jungmann, R. et al. Quantitative super-resolution imaging with qPAINT. Nat. Methods 13, 439–442 (2016).

    Article  CAS  Google Scholar 

  30. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  31. Smith, C. S., Joseph, N., Rieger, B. & Lidke, K. A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods 7, 373–375 (2010).

    Article  CAS  Google Scholar 

  32. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  Google Scholar 

  33. Pavani et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA 106, 2995–2999 (2009).

    Article  CAS  Google Scholar 

  34. Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204–208 (2011).

    Article  CAS  Google Scholar 

  35. Dorval, A. D. & White, J. A. Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J. Neurosci. 25, 10025–10028 (2005).

    Article  CAS  Google Scholar 

  36. Cao, Y.-Q. et al. Presynaptic Ca2+ channels compete for channel type-preferring slots in altered neurotransmission arising from Ca2+ channelopathy. Neuron 43, 387–400 (2004).

    Article  CAS  Google Scholar 

  37. Huang, F. et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013).

    Article  CAS  Google Scholar 

  38. Albrecht, D. et al. Nanoscopic compartmentalization of membrane protein motion at the axon initial segment. J. Cell Biol. 215, 37–46 (2016).

    Article  CAS  Google Scholar 

  39. Rondelez, Y. et al. Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nat. Biotechnol. 23, 361–365 (2005).

    Article  CAS  Google Scholar 

  40. Rhee, H.-W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Barish, H. Soundarajan, S. Agasti, J. Woehrstein and R. Jungmann for preliminary work on aspects of earlier versions of the project and for helpful discussions, and W. Shih, H. Sasaki, B. Beliveau, E. Boyden and J. Paulsson for helpful discussions. This work was supported by a National Institutes of Health (NIH) Director’s New Innovator Award (1DP2OD007292), an NIH Transformative Research Award (1R01EB018659), an NIH Pioneer Award (1DP1GM133052), an NIH grant (5R21HD072481), an Office of Naval Research (ONR) Young Investigator Program Award (N000141110914), ONR grants (N000141010827, N000141310593 and N000141812549), a National Science Foundation (NSF) Faculty Early Career Development Award (CCF1054898), an NSF grant (CCF1162459) and the Molecular Robotics Initiative fund at the Wyss Institute for Biologically Engineering Faculty to P.Y. M.D. acknowledges support from a HHMI International Predoctoral Fellowship, Department Fellowship from Systems Biology Department at the Harvard Medical School, and a Technology Development Fellowship from the Wyss Institute at Harvard University. S.K.S. acknowledges support from a Human Frontier Science Program (HFSP) fellowship (LT000048/2016-L).

Author information

Authors and Affiliations

Authors

Contributions

M.D. and P.Y. conceived and designed the study, N.L. and M.D. designed and performed the experiments and analysed the data, M.D. developed the software, S.K.S. provided advice and assistance with the microtubule sample preparation. P.Y. supervised the study. All the authors wrote and approved the manuscript.

Corresponding authors

Correspondence to Mingjie Dai or Peng Yin.

Ethics declarations

Competing interests

A US patent (US App No. 15/104,570) has been filed that covers the concepts reported in this work (inventors, R. Barish and P.Y.). P.Y. is cofounder of Ultivue Inc. and NuProbe Global.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials 1, Supplementary Materials 2, Supplementary Methods 3, Supplementary Notes 4, Supplementary Figs. 1–15 and 5 and Supplementary Tables 1–4.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Dai, M., Saka, S.K. et al. Super-resolution labelling with Action-PAINT. Nat. Chem. 11, 1001–1008 (2019). https://doi.org/10.1038/s41557-019-0325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0325-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing