Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

DNA NANOTUBES

Clocking growth and collapse

In biological systems, order typically emerges from out-of-equilibrium molecular processes that control both static patterns and dynamic changes. Now, the self-regulating assembly and disassembly of a synthetic system has been achieved on the micrometre scale, by coupling the growth of a DNA nanotube to a biochemical oscillator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assembly and disassembly of a DNA nanotube coupled to a biochemical oscillator.

References

  1. Turing, A. M. Philos. Trans. Royal Soc. B 237, 37–72 (1952).

    Article  Google Scholar 

  2. Nüsslein-Volhard, C. & Wieschaus, E. Nature 287, 795–801 (1980).

    Article  Google Scholar 

  3. deBoer, P. A. J. et al. Cell 56, 641–649 (1989).

    Article  CAS  Google Scholar 

  4. Loose, M. et al. Science 320, 789–792 (2008).

    Article  CAS  Google Scholar 

  5. Mitchison, T. J. & Kirschner, M. W. Nature 312, 237–242 (1984).

    Article  CAS  Google Scholar 

  6. Green, L. N. et al. Nat. Chem. https://doi.org/10.1038/s41557-019-0251-8 (2019).

    Article  PubMed  Google Scholar 

  7. Elowitz, M. B. & Leibler, S. Nature 403, 335–338 (2000).

    Article  CAS  Google Scholar 

  8. Winfree, A. T. J. of Chem. Educ. 61, 661–663 (1984).

    Article  Google Scholar 

  9. Epstein, I. R. & Showalter, K. J. Phys. Chem. 100, 13132–13147 (1996).

    Article  CAS  Google Scholar 

  10. Liedl, T. & Simmel, F. C. Nano Lett. 5, 1894–1898 (2005).

    Article  CAS  Google Scholar 

  11. Kim, J. & Winfree, E. Mol. Syst. Biol. 7, 465 (2011).

    Article  Google Scholar 

  12. Franco, E. et al. Proc. Natl Acad. Sci. 108, E784–E793 (2011).

    Article  CAS  Google Scholar 

  13. Qian, L. & Winfree, E. Science 332, 1196–1201 (2011).

    Article  CAS  Google Scholar 

  14. Zhang, D. Y. & Seelig, G. Nat. Chem. 3, 103–113 (2011).

    Article  CAS  Google Scholar 

  15. Gines, G. et al. Nat. Nanotechnol. 12, 351–361 (2017).

    Article  CAS  Google Scholar 

  16. Seeman, N. C. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  17. Rothemund, P. W. K. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  18. Ong, L. L. et al. Nature 552, 72–77 (2017).

    Article  CAS  Google Scholar 

  19. Rothemund, P. W. K. et al. J. Am. Chem. Soc. 126, 16344–16352 (2004).

    Article  CAS  Google Scholar 

  20. Zhang, D. Y. et al. Nat. Commun. 4, 1965 (2013).

    Article  Google Scholar 

  21. Bray, D. Cell Movements: From Molecules to Motility 2nd ed (ed. Day, M.) (Garland Science, New York, 2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Liedl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liedl, T. Clocking growth and collapse. Nat. Chem. 11, 497–499 (2019). https://doi.org/10.1038/s41557-019-0275-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0275-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing