Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of myosin light-chain phosphorylation and its roles in cardiovascular physiology and pathophysiology

Abstract

The regulation of muscle contraction is a critical function in the cardiovascular system, and abnormalities may be life-threatening or cause illness. The common basic mechanism in muscle contraction is the interaction between the protein filaments myosin and actin. Although this interaction is primarily regulated by intracellular Ca2+, the primary targets and intracellular signaling pathways differ in vascular smooth muscle and cardiac muscle. Phosphorylation of the myosin regulatory light chain (RLC) is a primary molecular switch for smooth muscle contraction. The equilibrium between phosphorylated and unphosphorylated RLC is dynamically achieved through two enzymes, myosin light chain kinase, a Ca2+-dependent enzyme, and myosin phosphatase, which modifies the Ca2+ sensitivity of contractions. In cardiac muscle, the primary target protein for Ca2+ is troponin C on thin filaments; however, RLC phosphorylation also plays a modulatory role in contraction. This review summarizes recent advances in our understanding of the regulation, physiological function, and pathophysiological involvement of RLC phosphorylation in smooth and cardiac muscles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018;114:529–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Horowitz A, Menice CB, Laporte R, Morgan KG. Mechanisms of smooth muscle contraction. Physiol Rev. 1996;764:967–1003.

    Article  Google Scholar 

  3. Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994;372:231–6.

    Article  CAS  PubMed  Google Scholar 

  4. Sweeney HL, Hammers DW. Muscle contraction. Cold Spring Harb Perspect Biol. 2018;102:a023200.

    Article  Google Scholar 

  5. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;834:1325–58.

    Article  Google Scholar 

  6. Kamm KE, Stull JT. Signaling to myosin regulatory light chain in sarcomeres. J Biol Chem. 2011;286:9941–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scruggs SB, Solaro RJ. The significance of regulatory light chain phosphorylation in cardiac physiology. Arch Biochem Biophys. 2011;510:129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sheikh F, Lyon RC, Chen J. Getting the skinny on thick filament regulation in cardiac muscle biology and disease. Trends Cardiovasc Med. 2014;24:133–41.

    Article  CAS  PubMed  Google Scholar 

  9. Chang AN, Kamm KE, Stull JT. Role of myosin light chain phosphatase in cardiac physiology and pathophysiology. J Mol Cell Cardiol. 2016;101:35–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharm. 2018;153:91–122.

    Article  CAS  PubMed  Google Scholar 

  11. Herring BP, El-Mounayri O, Gallagher PJ, Yin F, Zhou J. Regulation of myosin light chain kinase and telokin expression in smooth muscle tissues. Am J Physiol Cell Physiol. 2006;291:C817–27.

    Article  CAS  PubMed  Google Scholar 

  12. Ito M, Guerriero V Jr, Chen XM, Hartshorne DJ. Definition of the inhibitory domain of smooth muscle myosin light chain kinase by site-directed mutagenesis. Biochemistry. 1991;30:3498–503.

    Article  CAS  PubMed  Google Scholar 

  13. Hong F, Haldeman BD, Jackson D, Carter M, Baker JE, Cremo CR. Biochemistry of smooth muscle myosin light chain kinase. Arch Biochem Biophys. 2011;510:135–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kitazawa T, Gaylinn BD, Denney GH, Somlyo AP. G-protein-mediated Ca2+ sensitization of smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 1991;2663:1708–15.

    Article  Google Scholar 

  15. Bradley AB, Morgan KG. Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol. 1987;385:437–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shimokawa H, Sunamura S, Satoh K. RhoA/Rho-kinase in the cardiovascular system. Circ Res. 2016;118:352–66.

    Article  CAS  PubMed  Google Scholar 

  17. Loirand G, Guérin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res. 2006;98:322–34.

    Article  CAS  PubMed  Google Scholar 

  18. Alessi D, MacDougall LK, Sola MM, Ikebe M, Cohen P. The control of protein phosphatase-1 by targetting subunits. The major myosin phosphatase in avian smooth muscle is a novel form of protein phosphatase-1. Eur J Biochem. 1992;210:1023–35.

    Article  CAS  PubMed  Google Scholar 

  19. Shimizu H, Ito M, Miyahara M, Ichikawa K, Okubo S, Konishi T, et al. Characterization of the myosin-binding subunit of smooth muscle myosin phosphatase. J Biol Chem. 1994;269:30407–11.

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi N, Ito M, Tanaka J, Nakano T, Kaibuchi K, Odai H, et al. Localization of the gene coding for myosin phosphatase, target subunit 1 (MYPT1) to human chromosome 12q15-q21. Genomics. 1997;44:150–2.

    Article  CAS  PubMed  Google Scholar 

  21. Chen YH, Chen MX, Alessi DR, Campbell DG, Shanahan C, Cohen P, et al. Molecular cloning of cDNA encoding the 110 kDa and 21 kDa regulatory subunits of smooth muscle protein phosphatase 1 M. FEBS Lett. 1994;356:51–5.

    Article  CAS  PubMed  Google Scholar 

  22. Hartshorne DJ, Ito M, Erdödi F. Myosin light chain phosphatase: subunit composition, interactions and regulation. J Muscle Res Cell Motil. 1998;19:325–41.

    Article  CAS  PubMed  Google Scholar 

  23. Hartshorne DJ, Ito M, Erdödi F. Role of protein phosphatase type 1 in contractile functions: Myosin phosphatase. J Biol Chem. 2004;279:37211–4.

    Article  CAS  PubMed  Google Scholar 

  24. Ito M, Nakano T, Erdodi F, Hartshorne DJ. Myosin phosphatase: structure, regulation and function. Mol Cell Biochem. 2004;259:197–209.

    Article  CAS  PubMed  Google Scholar 

  25. Grassie ME, Moffat LD, Walsh MP, MacDonald JA. The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ. Arch Biochem Biophys. 2011;510:147–59.

    Article  CAS  PubMed  Google Scholar 

  26. Kiss A, Erdődi F, Lontay B. Myosin phosphatase: unexpected functions of a long-known enzyme. Biochim Biophys Acta Mol Cell Res. 2019;1866:2–15.

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka J, Ito M, Feng J, Ichikawa K, Hamaguchi T, Nakamura M, et al. Interaction of myosin phosphatase target subunit 1 with the catalytic subunit of type 1 protein phosphatase. Biochemistry. 1998;37:16697–703.

    Article  CAS  PubMed  Google Scholar 

  28. Ichikawa K, Hirano K, Ito M, Tanaka J, Nakano T, Hartshorne DJ. Interactions and properties of smooth muscle myosin phosphatase. Biochemistry. 1996;35:6313–20.

    Article  CAS  PubMed  Google Scholar 

  29. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273:245–8.

    Article  CAS  PubMed  Google Scholar 

  30. Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, et al. Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Iα. Science. 1999;286:1583–7.

    Article  CAS  PubMed  Google Scholar 

  31. Ichikawa K, Ito M, Hartshorne DJ. Phosphorylation of the large subunit of myosin phosphatase and inhibition of phosphatase activity. J Biol Chem. 1996;27:4733–40.

    Article  Google Scholar 

  32. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 1996;15:2208–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eto M, Ohmori T, Suzuki M, Furuya K, Morita F. A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem. 1995;118:1104–7.

    Article  CAS  PubMed  Google Scholar 

  34. Eto M, Senba S, Morita F, Yazawa M. Molecular cloning of a novel phosphorylation-dependent inhibitory protein of protein phosphatase-1 (CPI17) in smooth muscle: Its specific localization in smooth muscle. FEBS Lett. 1997;410:356–60.

    Article  CAS  PubMed  Google Scholar 

  35. Leung T, Manser E, Tan L, Lim L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem. 1995;270:29051–4.

    Article  CAS  PubMed  Google Scholar 

  36. Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996;15:1885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fukata Y, Amano M, Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharm Sci. 2001;22:32–9.

    Article  CAS  PubMed  Google Scholar 

  38. Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton. 2010;67:545–54.

    Article  CAS  PubMed  Google Scholar 

  39. Feng J, Ito M, Ichikawa K, Isaka N, Nishikawa M, Hartshorne DJ, et al. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem. 1999;274:37385–90.

    Article  CAS  PubMed  Google Scholar 

  40. Khromov A, Choudhury N, Stevenson AS, Somlyo AV, Eto M. Phosphorylation-dependent autoinhibition of myosin light chain phosphatase accounts for Ca2+ sensitization force of smooth muscle contraction. J Biol Chem. 2009;284:21569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khasnis M, Nakatomi A, Gumpper K, Eto M. Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1. Biochemistry. 2014;53:2701–9.

    Article  CAS  PubMed  Google Scholar 

  42. Velasco G, Armstrong C, Morrice N, Frame S, Cohen P. Phosphorylation of the regulatory subunit of smooth muscle protein phosphatase 1 M at Thr850 induces its dissociation from myosin. FEBS Lett. 2002;527:101–4.

    Article  CAS  PubMed  Google Scholar 

  43. Murányi A, Derkach D, Erdodi F, Kiss A, Ito M, Hartshorne DJ. Phosphorylation of Thr695 and Thr850 on the myosin phosphatase target subunit: inhibitory effects and occurrence in A7r5 cells. FEBS Lett. 2005;579:6611–5.

    Article  PubMed  Google Scholar 

  44. Kiss E, Murányi A, Csortos C, Gergely P, Ito M, Hartshorne DJ, et al. Integrin-linked kinase phosphorylates the myosin phosphatase target subunit at the inhibitory site in platelet cytoskeleton. Biochem J. 2002;365:79–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murányi A, Zhang R, Liu F, Hirano K, Ito M, Epstein HF, et al. Myotonic dystrophy protein kinase phosphorylates the myosin phosphatase targeting subunit and inhibits myosin phosphatase activity. FEBS Lett. 2001;493:80–4.

    Article  PubMed  Google Scholar 

  46. MacDonald JA, Borman MA, Murányi A, Somlyo AV, Hartshorne DJ, Haystead TA. Identification of the endogenous smooth muscle myosin phosphatase-associated kinase. Proc Natl Acad Sci USA. 2001;98:2419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Butler T, Paul J, Europe-Finner N, Smith R, Chan EC. Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. Am J Physiol Cell Physiol. 2013;304:C485–504.

    Article  CAS  PubMed  Google Scholar 

  48. Niiro N, Koga Y, Ikebe M. Agonist-induced changes in the phosphorylation of the myosin- binding subunit of myosin light chain phosphatase and CPI17, two regulatory factors of myosin light chain phosphatase, in smooth muscle. Biochem J. 2003;369:117–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kitazawa T, Eto M, Woodsome TP, Khalequzzaman M. Phosphorylation of the myosin phosphatase targeting subunit and CPI-17 during Ca2+ sensitization in rabbit smooth muscle. J Physiol. 2003;546:879–89.

    Article  CAS  PubMed  Google Scholar 

  50. Wilson DP, Susnjar M, Kiss E, Sutherland C, Walsh MP. Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem J. 2005;389:763–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsai MH, Chang AN, Huang J, He W, Sweeney HL, Zhu M, et al. Constitutive phosphorylation of myosin phosphatase targeting subunit-1 in smooth muscle. J Physiol. 2014;592:3031–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen CP, Chen X, Qiao YN, Wang P, He WQ, Zhang CH, et al. In vivo roles for myosin phosphatase targeting subunit-1 phosphorylation sites T694 and T852 in bladder smooth muscle contraction. J Physiol. 2015;593:681–700.

    Article  CAS  PubMed  Google Scholar 

  53. Li L, Eto M, Lee MR, Morita F, Yazawa M, Kitazawa T. Possible involvement of the novel CPI-17 protein in protein kinase C signal transduction of rabbit arterial smooth muscle. J Physiol. 1998;508:871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eto M. Regulation of cellular protein phosphatase-1 (PP1) by phosphorylation of the CPI-17 family, C-kinase-activated PP1 inhibitors. J Biol Chem. 2009;284:35273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eto M, Kitazawa T. Diversity and plasticity in signaling pathways that regulate smooth muscle responsiveness: paradigms and paradoxes for the myosin phosphatase, the master regulator of smooth muscle contraction. J Smooth Muscle Res. 2017;53:1–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Machida H, Ito M, Okamoto R, Shiraki K, Isaka N, Hartshorne DJ, et al. Molecular cloning and analysis of the 5’-flanking region of the human MYPT1 gene. Biochim Biophys Acta. 2001;1517:424–9.

    Article  CAS  PubMed  Google Scholar 

  57. Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, et al. Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett. 2000;475:197–200.

    Article  CAS  PubMed  Google Scholar 

  58. Hamaguchi T, Ito M, Feng J, Seko T, Koyama M, Machida H, et al. Phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by protein kinase N. Biochem Biophys Res Commun. 2000;274:825–30.

    Article  CAS  PubMed  Google Scholar 

  59. Kitazawa T, Eto M, Woodsome TP, Brautigan DL. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem. 2000;275:9897–900.

    Article  CAS  PubMed  Google Scholar 

  60. Shin HM, Je HD, Gallant C, Tao TC, Hartshorne DJ, Ito M, et al. Differential association and localization of myosin phosphatase subunits during agonist-induced signal transduction in smooth muscle. Circ Res. 2002;90:546–53.

    Article  CAS  PubMed  Google Scholar 

  61. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 1996;271:20246–9.

    Article  CAS  PubMed  Google Scholar 

  62. Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T, et al. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 1997;272:12257–60.

    Article  CAS  PubMed  Google Scholar 

  63. Deng JT, Bhaidani S, Sutherland C, MacDonald JA, Walsh MP. Rho-associated kinase and zipper-interacting protein kinase, but not myosin light chain kinase, are involved in the regulation of myosin phosphorylation in serum-stimulated human arterial smooth muscle cells. PLoS ONE. 2019;14:e0226406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Walsh MP. Vascular smooth muscle myosin light chain diphosphorylation: mechanism, function, and pathological implications. IUBMB Life. 2011;63:987–1000.

    Article  CAS  PubMed  Google Scholar 

  65. Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP. Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol. 2000;184:409–20.

    Article  CAS  PubMed  Google Scholar 

  66. Morgado M, Cairrão E, Santos-Silva AJ, Verde I. Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell Mol Life Sci. 2012;69:247–66.

    Article  CAS  PubMed  Google Scholar 

  67. Lee MR, Li L, Kitazawa T. Cyclic GMP causes Ca2+ desensitization in vascular smooth muscle by activating the myosin light chain phosphatase. J Biol Chem. 1997;272:5063–8.

    Article  CAS  PubMed  Google Scholar 

  68. Khatri JJ, Joyce KM, Brozovich FV, Fisher SA. Role of myosin phosphatase isoforms in cGMP-mediated smooth muscle relaxation. J Biol Chem. 2001;276:37250–7.

    Article  CAS  PubMed  Google Scholar 

  69. Dippold RP, Fisher SA. Myosin phosphatase isoforms as determinants of smooth muscle contractile function and calcium sensitivity of force production. Microcirculation. 2014;21:239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vetterkind S, Lee E, Sundberg E, Poythress RH, Tao TC, Preuss U, et al. Par-4: a new activator of myosin phosphatase. Mol Biol Cell. 2010;21:1214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakamura M, Ichikawa K, Ito M, Yamamori B, Okinaka T, Isaka N, et al. Effects of the phosphorylation of myosin phosphatase by cyclic GMP-dependent protein kinase. Cell Signal. 1999;11:671–6.

    Article  CAS  PubMed  Google Scholar 

  72. Ito M, Feng J, Tsujino S, Inagaki N, Inagaki M, Tanaka J, et al. Interaction of smooth muscle myosin phosphatase with phospholipids. Biochemistry. 1997;36:7607–14.

    Article  CAS  PubMed  Google Scholar 

  73. Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, et al. Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem. 2004;279:34496–504.

    Article  CAS  PubMed  Google Scholar 

  74. Grassie ME, Sutherland C, Ulke-Lemée A, Chappellaz M, Kiss E, Walsh MP, et al. Cross-talk between Rho-associated kinase and cyclic nucleotide-dependent kinase signaling pathways in the regulation of smooth muscle myosin light chain phosphatase. J Biol Chem. 2012;287:36356–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Inagaki N, Nishizawa M, Ito M, Fujioka M, Nakano T, Tsujino S, et al. Myosin binding subunit of smooth muscle myosin phosphatase at the cell-cell adhesion sites in MDCK cells. Biochem Biophys Res Commun. 1997;230:552–6.

    Article  CAS  PubMed  Google Scholar 

  76. Qiao YN, He WQ, Chen CP, Zhang CH, Zhao W, Wang P, et al. Myosin phosphatase target subunit 1 (MYPT1) regulates the contraction and relaxation of vascular smooth muscle and maintains blood pressure. J Biol Chem. 2014;289:22512–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Etter EF, Eto M, Wardle RL, Brautigan DL, Murphy RA. Activation of myosin light chain phosphatase in intact arterial smooth muscle during nitric oxide-induced relaxation. J Biol Chem. 2001;276:34681–5.

    Article  CAS  PubMed  Google Scholar 

  78. Kitazawa T, Semba S, Yang Huh YH, Kitazawa K, Eto M. Nitric oxide-induced biphasic mechanism of vascular relaxation via dephosphorylation of CPI-17 and MYPT1. J Physiol. 2009;587:3587–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sandu OA, Ito M, Begum N. Selected contribution: Insulin utilizes NO/cGMP pathway to activate myosin phosphatase via Rho inhibition in vascular smooth muscle. J Appl Physiol. 2001;91:1475–82.

    Article  CAS  PubMed  Google Scholar 

  80. Begum N, Sandu OA, Ito M, Lohmann SM, Smolenski A. Active Rho kinase (ROK-α) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem. 2002;277:6214–22.

    Article  CAS  PubMed  Google Scholar 

  81. Ito M, Dabrowska R, Guerriero V Jr, Hartshorne DJ. Identification in turkey gizzard of an acidic protein related to the C-terminal portion of smooth muscle myosin light chain kinase. J Biol Chem. 1989;264:13971–4.

    Article  CAS  PubMed  Google Scholar 

  82. Khromov AS, Wang H, Choudhury N, McDuffie M, Herring BP, Nakamoto R, et al. Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation. Proc Natl Acad Sci USA. 2006;103:2440–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Khromov AS, Momotani K, Jin L, Artamonov MV, Shannon J, Eto M, et al. Molecular mechanism of telokin-mediated disinhibition of myosin light chain phosphatase and cAMP/cGMP-induced relaxation of gastrointestinal smooth muscle. J Biol Chem. 2012;287:20975–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nobe K, Paul RJ. Distinct pathways of Ca2+ sensitization in porcine coronary artery: effects of Rho-related kinase and protein kinase C inhibition on force and intracellular Ca2+. Circ Res. 2001;88:1283–90.

    Article  CAS  PubMed  Google Scholar 

  85. Dimopoulos GJ, Semba S, Kitazawa K, Eto M, Kitazawa T. Ca2+-dependent rapid Ca2+ sensitization of contraction in arterial smooth muscle. Circ Res. 2007;100:121–9.

    Article  CAS  PubMed  Google Scholar 

  86. Raina H, Zacharia J, Li M, Wier WG. Activation by Ca2+/calmodulin of an exogenous myosin light chain kinase in mouse arteries. J Physiol. 2009;587:2599–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kitazawa T, Kitazawa K. Size-dependent heterogeneity of contractile Ca2+ sensitization in rat arterial smooth muscle. J Physiol. 2012;590:5401–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999;79:387–423.

    Article  CAS  PubMed  Google Scholar 

  89. Hill MA, Zou H, Potocnik SJ, Meininger GA, Davis MJ. Invited review: arteriolar smooth muscle mechanotransduction: Ca2+ signaling pathways underlying myogenic reactivity. J Appl Physiol. 2001;91:973–83.

    Article  CAS  PubMed  Google Scholar 

  90. Schubert R, Lidington D, Bolz SS. The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasoconstriction. Cardiovasc Res. 2008;77:8–18.

    CAS  PubMed  Google Scholar 

  91. Cole WC, Welsh DG. Role of myosin light chain kinase and myosin light chain phosphatase in the resistance arterial myogenic response to intravascular pressure. Arch Biochem Biophys. 2011;510:160–73.

    Article  CAS  PubMed  Google Scholar 

  92. Zou H, Ratz PH, Hill MA. Role of myosin phosphorylation and [Ca2+]i in myogenic reactivity and arteriolar tone. Am J Physiol. 1995;269:H1590–H1596.

    CAS  PubMed  Google Scholar 

  93. Hill MA, Falcone JC, Meininger GA. Evidence for protein kinase C involvement in arteriolar myogenic reactivity. Am J Physiol. 1990;259:H1586–H1594.

    CAS  PubMed  Google Scholar 

  94. Karibe A, Watanabe J, Horiguchi S, Takeuchi M, Suzuki S, Funakoshi M, et al. Role of cytosolic Ca2+ and protein kinase C in developing myogenic contraction in isolated rat small arteries. Am J Physiol. 1997;272:H1165–H1172.

    CAS  PubMed  Google Scholar 

  95. Wesselman JP, Spaan JA, van der Meulen ET, VanBavel E. Role of protein kinase C in myogenic calcium-contraction coupling of rat cannulated mesenteric small arteries. Clin Exp Pharm Physiol. 2001;28:848–55.

    Article  CAS  Google Scholar 

  96. Lagaud G, Gaudreault N, Moore ED, Van Breemen C, Laher I. Pressure-dependent myogenic constriction of cerebral arteries occurs independently of voltage-dependent activation. Am J Physiol Heart Circ Physiol. 2002;283:H2187–H2195.

    Article  CAS  PubMed  Google Scholar 

  97. Bolz SS, Vogel L, Sollinger D, Derwand R, Boer C, Pitson SM, et al. Sphingosine kinase modulates microvascular tone and myogenic responses through activation of RhoA/Rho kinase. Circulation. 2003;108:342–7.

    Article  CAS  PubMed  Google Scholar 

  98. Dubroca C, Loyer X, Retailleau K, Loirand G, Pacaud P, Feron O, et al. RhoA activation and interaction with caveolin-1 are critical for pressure-induced myogenic tone in rat mesenteric resistance arteries. Cardiovasc Res. 2007;73:190–7.

    Article  CAS  PubMed  Google Scholar 

  99. El-Yazbi AF, Abd-Elrahman KS. ROK and arteriolar myogenic tone generation: molecular evidence in health and disease. Front Pharm. 2017;8:87.

    Article  Google Scholar 

  100. Johnson RP, El-Yazbi AF, Takeya K, Walsh EJ, Walsh MP, Cole WC. Ca2+ sensitization via phosphorylation of myosin phosphatase targeting subunit at threonine-855 by Rho kinase contributes to the arterial myogenic response. J Physiol. 2009;587:2537–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. El-Yazbi AF, Johnson RP, Walsh EJ, Takeya K, Walsh MP, Cole WC. Pressure-dependent contribution of Rho kinase-mediated calcium sensitization in serotonin-evoked vasoconstriction of rat cerebral arteries. J Physiol. 2010;588:1747–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moreno-Domínguez A, Colinas O, El-Yazbi A, Walsh EJ, Hill MA, Walsh MP, et al. Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries. J Physiol. 2013;591:1235–50.

    Article  PubMed  Google Scholar 

  103. Lee DL, Webb RC, Jin L. Hypertension and RhoA/Rho-kinase signaling in the vasculature: highlights from the recent literature. Hypertension. 2004;44:796–9.

    Article  CAS  PubMed  Google Scholar 

  104. Han YJ, Hu WY, Chernaya O, Antic N, Gu L, Gupta M, et al. Increased myosin light chain kinase expression in hypertension: Regulation by serum response factor via an insertion mutation in the promoter. Mol Biol Cell. 2006;17:4039–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hu WY, Han YJ, Gu L, Piano M, de Lanerolle P. Involvement of Ras-regulated myosin light chain phosphorylation in the captopril effects in spontaneously hypertensive rats. Am J Hypertens. 2007;20:53–61.

    Article  CAS  PubMed  Google Scholar 

  106. He WQ, Peng YJ, Zhang WC, Lv N, Tang J, Chen C, et al. Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice. Gastroenterology. 2008;1352:610–20.

    Article  Google Scholar 

  107. He WQ, Qiao YN, Zhang CH, Peng YJ, Chen C, Wang P, et al. Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt-induced hypertension. Am J Physiol Heart Circ Physiol. 2011;3012:H584–H591.

    Article  Google Scholar 

  108. Wang L, Guo DC, Cao J, Gong L, Kamm KE, Regalado E, et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet. 2010;87:701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Okamoto R, Ito M, Suzuki N, Kongo M, Moriki N, Saito H, et al. The targeted disruption of the MYPT1 gene results in embryonic lethality. Transgenic Res. 2005;14:337–40.

    Article  CAS  PubMed  Google Scholar 

  110. He WQ, Qiao YN, Peng YJ, Zha JM, Zhang CH, Chen C, et al. Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1. Gastroenterology. 2013;144:1456–65.

    Article  CAS  PubMed  Google Scholar 

  111. Hughes JJ, Alkhunaizi E, Kruszka P, Pyle LC, Grange DK, Berger SI, et al. Loss-of-function variants in PPP1R12A: from isolated sex reversal to holoprosencephaly spectrum and urogenital malformations. Am J Hum Genet. 2020;106:121–8.

    Article  CAS  PubMed  Google Scholar 

  112. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389:990–4.

    Article  CAS  PubMed  Google Scholar 

  113. Seko T, Ito M, Kureishi Y, Okamoto R, Moriki N, Onishi K, et al. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ Res. 2003;92:411–8.

    Article  CAS  PubMed  Google Scholar 

  114. Chrissobolis S, Sobey CG. Evidence that Rho-kinase activity contributes to cerebral vascular tone in vivo and is enhanced during chronic hypertension: Comparison with protein kinase C. Circ Res. 2001;88:774–9.

    Article  CAS  PubMed  Google Scholar 

  115. Moriki N, Ito M, Seko T, Kureishi Y, Okamoto R, Nakakuki T, et al. RhoA activation in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Hypertens Res. 2004;27:263–70.

    Article  CAS  PubMed  Google Scholar 

  116. Crestani S, Webb RC, da Silva-Santos JE. High-salt intake augments the activity of the RhoA/ROCK pathway and reduces intracellular calcium in arteries from rats. Am J Hypertens. 2017;30:389–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Booden MA, Siderovski DP, Der CJ. Leukemia-associated Rho guanine nucleotide exchange factor promotes Gαq-coupled activation of RhoA. Mol Cell Biol. 2002;22:4053–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sakurada S, Takuwa N, Sugimoto N, Wang Y, Seto M, Sasaki Y, et al. Ca2+-dependent activation of Rho and Rho kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ Res. 2003;93:548–56.

    Article  CAS  PubMed  Google Scholar 

  119. Siehler S. Regulation of RhoGEF proteins by G12/13-coupled receptors. Br J Pharm. 2009;158:41–9.

    Article  CAS  Google Scholar 

  120. Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93:269–309.

    Article  CAS  PubMed  Google Scholar 

  121. Wirth A, Benyó Z, Lukasova M, Leutgeb B, Wettschureck N, Gorbey S, et al. G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat Med. 2008;14:64–8.

    Article  CAS  PubMed  Google Scholar 

  122. Guilluy C, Brégeon J, Toumaniantz G, Rolli-Derkinderen M, Retailleau K, Loufrani L, et al. The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat Med. 2010;16:183–90.

    Article  CAS  PubMed  Google Scholar 

  123. Ying Z, Jin L, Dorrance AM, Webb RC. Increased expression of mRNA for regulator of G protein signaling domain-containing Rho guanine nucleotide exchange factors in aorta from stroke-prone spontaneously hypertensive rats. Am J Hypertens. 2004;17:981–5.

    Article  CAS  PubMed  Google Scholar 

  124. Bai X, Lenhart KC, Bird KE, Suen AA, Rojas M, Kakoki M, et al. The smooth muscle-selective RhoGAP GRAF3 is a critical regulator of vascular tone and hypertension. Nat Commun. 2013;4:2910.

    Article  PubMed  Google Scholar 

  125. Masumoto A, Hirooka Y, Shimokawa H, Hironaga K, Setoguchi S, Takeshita A. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension. 2001;38:1307–10.

    Article  CAS  PubMed  Google Scholar 

  126. Momotani K, Somlyo AV. 63RhoGEF: a new switch for Gq-mediated activation of smooth muscle. Trends Cardiovasc Med. 2012;22:122–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Calò LA, Davis PA, Pagnin E, Dal ML, Maiolino G, Seccia TM, et al. Increased level of p63RhoGEF and RhoA/Rho kinase activity in hypertensive patients. J Hypertens. 2014;32:331–8.

    Article  PubMed  Google Scholar 

  128. Carbone ML, Brégeon J, Devos N, Chadeuf G, Blanchard A, Azizi M, et al. Angiotensin II activates the RhoA exchange factor Arhgef1 in humans. Hypertension. 2015;65:1273–8.

    Article  CAS  PubMed  Google Scholar 

  129. Su W, Xie Z, Liu S, Calderon LE, Guo Z, Gong MC. Smooth muscle-selective CPI-17 expression increases vascular smooth muscle contraction and blood pressure. Am J Physiol Heart Circ Physiol. 2013;305:H104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yang Q, Fujii W, Kaji N, Kakuta S, Kada K, Kuwahara M, et al. The essential role of phospho-T38 CPI-17 in the maintenance of physiological blood pressure using genetically modified mice. FASEB J. 2018;32:2095–109.

    Article  CAS  PubMed  Google Scholar 

  131. Sun J, Tao T, Zhao W, Wei L, She F, Wang P, et al. CPI-17-mediated contraction of vascular smooth muscle is essential for the development of hypertension in obese mice. J Genet Genomics. 2019;46:109–18.

    Article  PubMed  Google Scholar 

  132. Xie Z, Su W, Guo Z, Pang H, Post SR, Gong MC. Up-regulation of CPI-17 phosphorylation in diabetic vasculature and high glucose cultured vascular smooth muscle cells. Cardiovasc Res. 2006;69:491–501.

    Article  CAS  PubMed  Google Scholar 

  133. Kizub IV, Pavlova OO, Johnson CD, Soloviev AI, Zholos AV. Rho kinase and protein kinase C involvement in vascular smooth muscle myofilament calcium sensitization in arteries from diabetic rats. Br J Pharm. 2010;159:1724–31.

    Article  CAS  Google Scholar 

  134. Lubomirov LT, Gagov H, Schroeter MM, Wiesner RJ, Franko A. Augmented contractility of murine femoral arteries in a streptozotocin diabetes model is related to increased phosphorylation of MYPT1. Physiol Rep. 2019;7:e13975.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, et al. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart. 2005;91:391–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ishikura K, Yamada N, Ito M, Ota S, Nakamura M, Isaka N, et al. Beneficial acute effects of rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J. 2006;70:174–8.

    Article  CAS  PubMed  Google Scholar 

  137. Oka M, Homma N, Taraseviciene-Stewart L, Morris KG, Kraskauskas D, Burns N, et al. Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res. 2007;100:923–9.

    Article  CAS  PubMed  Google Scholar 

  138. Oka M, Fagan KA, Jones PL, McMurtry IF. Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharm. 2008;155:444–54.

    Article  CAS  Google Scholar 

  139. Barman SA, Zhu S, White RE. RhoA/Rho-kinase signaling: a therapeutic target in pulmonary hypertension. Vasc Health Risk Manag. 2009;5:663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Guilluy C, Sauzeau V, Rolli-Derkinderen M, Guérin P, Sagan C, Pacaud P, et al. Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension. Br J Pharm. 2005;146:1010–8.

    Article  CAS  Google Scholar 

  141. Do e Z, Fukumoto Y, Takaki A, Tawara S, Ohashi J, Nakano M, et al. Evidence for Rho-kinase activation in patients with pulmonary arterial hypertension. Circ J. 2009;73:1731–9.

    Article  Google Scholar 

  142. Shimizu T, Fukumoto Y, Tanaka S, Satoh K, Ikeda S, Shimokawa H. Crucial role of ROCK2 in vascular smooth muscle cells for hypoxia-induced pulmonary hypertension in mice. Arterioscler Thromb Vasc Biol. 2013;33:2780–91.

    Article  CAS  PubMed  Google Scholar 

  143. Hartmann S, Ridley AJ, Lutz S. The Function of Rho-Associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front Pharm. 2015;6:276.

    Article  Google Scholar 

  144. Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V. RhoGTPase in vascular disease. Cells. 2019;8:551.

    Article  CAS  PubMed Central  Google Scholar 

  145. Scruggs SB, Hinken AC, Thawornkaiwong A, Robbins J, Walker LA, de Tombe PP, et al. Ablation of ventricular myosin regulatory light chain phosphorylation in mice causes cardiac dysfunction in situ and affects neighboring myofilament protein phosphorylation. J Biol Chem. 2009;284:5097–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ding P, Huang J, Battiprolu PK, Hill JA, Kamm KE, Stull JT. Cardiac myosin light chain kinase is necessary for myosin regulatory light chain phosphorylation and cardiac performance in vivo. J Biol Chem. 2010;285:40819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Warren SA, Briggs LE, Zeng H, Chuang J, Chang EI, Terada R, et al. Myosin light chain phosphorylation is critical for adaptation to cardiac stress. Circulation. 2012;126:2575–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chang AN, Battiprolu PK, Cowley PM, Chen G, Gerard RD, Pinto JR, et al. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo. J Biol Chem. 2015;290:10703–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Andersen GØ, Qvigstad E, Schiander I, Aass H, Osnes JB, Skomedal T. α1-AR-induced positive inotropic response in heart is dependent on myosin light chain phosphorylation. Am J Physiol Heart Circ Physiol. 2002;283:H1471–80.

    Article  CAS  PubMed  Google Scholar 

  150. Riise J, Nguyen CH, Qvigstad E, Sandnes DL, Osnes JB, Skomedal T, et al. Prostanoid F receptors elicit an inotropic effect in rat left ventricle by enhancing myosin light chain phosphorylation. Cardiovasc Res. 2008;80:407–15.

    Article  CAS  PubMed  Google Scholar 

  151. Davis JS, Hassanzadeh S, Winitsky S, Lin H, Satorius C, Vemuri R, et al. The overall pattern of cardiac contraction depends on a spatial gradient of myosin regulatory light chain phosphorylation. Cell. 2001;107:631–41.

    Article  CAS  PubMed  Google Scholar 

  152. Seguchi O, Takashima S, Yamazaki S, Asakura M, Asano Y, Shintani Y, et al. A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart. J Clin Invest. 2007;117:2812–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chan JY, Takeda M, Briggs LE, Graham ML, Lu JT, Horikoshi N, et al. Identification of cardiac-specific myosin light chain kinase. Circ Res. 2008;102:571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chang AN, Mahajan P, Knapp S, Barton H, Sweeney HL, Kamm KE, et al. Cardiac myosin light chain is phosphorylated by Ca2+/calmodulin-dependent and-independent kinase activities. Proc Natl Acad Sci USA. 2016;113:E3824–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Taniguchi M, Okamoto R, Ito M, Goto I, Fujita S, Konishi K, et al. New isoform of cardiac myosin light chain kinase and the role of cardiac myosin phosphorylation in α1-adrenoceptor mediated inotropic response. PLoS ONE. 2015;10:e0141130.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Sevrieva IR, Brandmeier B, Ponnam S, Gautel M, Irving M, Campbell KS, et al. Cardiac myosin regulatory light chain kinase modulates cardiac contractility by phosphorylating both myosin regulatory light chain and troponin I. J Biol Chem. 2020;295:4398–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu R, Correll RN, Davis J, Vagnozzi RJ, York AJ, Sargent MA, et al. Cardiac-specific deletion of protein phosphatase 1β promotes increased myofilament protein phosphorylation and contractile alterations. J Mol Cell Cardiol. 2015;87:204–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Fujioka M, Takahashi N, Odai H, Araki S, Ichikawa K, Feng J, et al. A new isoform of human myosin phosphatase targeting/regulatory subunit (MYPT2): cDNA cloning, tissue expression, and chromosomal mapping. Genomics. 1998;49:59–68.

    Article  CAS  PubMed  Google Scholar 

  159. Moorhead G, Johnson D, Morrice N, Cohen P. The major myosin phosphatase in skeletal muscle is a complex between the β-isoform of protein phosphatase 1 and the MYPT2 gene product. FEBS Lett. 1998;438:141–4.

    Article  CAS  PubMed  Google Scholar 

  160. Arimura T, Suematsu N, Zhou YB, Nishimura J, Satoh S, Takeshita A, et al. Identification, characterization, and functional analysis of heart-specific myosin light chain phosphatase small subunit. J Biol Chem. 2001;276:6073–82.

    Article  CAS  PubMed  Google Scholar 

  161. Okamoto R, Kato T, Mizoguchi A, Takahashi N, Nakakuki T, Mizutani H, et al. Characterization and function of MYPT2, a target subunit of myosin phosphatase in heart. Cell Signal. 2006;18:1408–16.

    Article  CAS  PubMed  Google Scholar 

  162. Morano I, Hofmann F, Zimmer M, Rüegg JC. The influence of P-light chain phosphorylation by myosin light chain kinase on the calcium sensitivity of chemically skinned heart fibres. FEBS Lett. 1985;189:221–4.

    Article  CAS  PubMed  Google Scholar 

  163. Sweeney HL, Stull JT. Phosphorylation of myosin in permeabilized mammalian cardiac and skeletal muscle cells. Am J Physiol. 1986;250:C657–60.

    Article  CAS  PubMed  Google Scholar 

  164. Olsson MC, Patel JR, Fitzsimons DP, Walker JW, Moss RL. Basal myosin light chain phosphorylation is a determinant of Ca2+ sensitivity of force and activation dependence of the kinetics of myocardial force development. Am J Physiol Heart Circ Physiol. 2004;287:H2712–8.

    Article  CAS  PubMed  Google Scholar 

  165. Stelzer JE, Patel JR, Moss RL. Acceleration of stretch activation in murine myocardium due to phosphorylation of myosin regulatory light chain. J Gen Physiol. 2006;128:261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kampourakis T, Sun YB, Irving M. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments. Proc Natl Acad Sci USA. 2016;113:E3039–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sheikh F, Ouyang K, Campbell SG, Lyon RC, Chuang J, Fitzsimons D, et al. Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease. J Clin Invest. 2012;122:1209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. van der Velden J, Papp Z, Zaremba R, Boontje NM, de Jong JW, Owen VJ, et al. Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. Cardiovasc Res. 2003;57:37–47.

    Article  PubMed  Google Scholar 

  169. van der Velden J, Papp Z, Boontje NM, Zaremba R, de Jong JW, Janssen PM, et al. The effect of myosin light chain 2 dephosphorylation on Ca2+-sensitivity of force is enhanced in failing human hearts. Cardiovasc Res. 2003;57:505–14.

    Article  PubMed  Google Scholar 

  170. Riise J, Nguyen CH, Hussain RI, Dahl CP, Ege MS, Osnes JB, et al. Prostanoid-mediated inotropic responses are attenuated in failing human and rat ventricular myocardium. Eur J Pharm. 2012;686:66–73.

    Article  CAS  Google Scholar 

  171. Aoki H, Sadoshima J, Izumo S. Myosin light chain kinase mediates sarcomere organization during cardiac hypertrophy in vitro. Nat Med. 2000;6:183–8.

    Article  CAS  PubMed  Google Scholar 

  172. Wang S, Cheng M, Hu Z, Hu S, Zou Q, Lai X, et al. Angiotensin II facilitates matrix metalloproteinase-9-mediated myosin light chain kinase degradation in pressure overload-induced cardiac hypertrophy. Cell Physiol Biochem. 2017;44:2281–95.

    Article  CAS  PubMed  Google Scholar 

  173. Wang S, Wang H, Su X, Liu B, Wang L, Yan H, et al. β-adrenergic activation may promote myosin light chain kinase degradation through calpain in pressure overload-induced cardiac hypertrophy: β-adrenergic activation results in MLCK degradation. Biomed Pharmacother. 2020;129:110438.

    Article  CAS  PubMed  Google Scholar 

  174. Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet. 1996;13:63–9.

    Article  CAS  PubMed  Google Scholar 

  175. Andersen PS, Havndrup O, Bundgaard H, Moolman-Smook JC, Larsen LA, Mogensen J, et al. Myosin light chain mutations in familial hypertrophic cardiomyopathy: phenotypic presentation and frequency in Danish and South African populations. J Med Genet. 2001;38:e43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, et al. Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107:2227–32.

    Article  PubMed  Google Scholar 

  177. Szczesna-Cordary D, Guzman G, Zhao J, Hernandez O, Wei J, Diaz-Perez Z. The E22K mutation of myosin RLC that causes familial hypertrophic cardiomyopathy increases calcium sensitivity of force and ATPase in transgenic mice. J Cell Sci. 2005;118:3675–83.

    Article  CAS  PubMed  Google Scholar 

  178. Yadav S, Szczesna-Cordary D. Pseudophosphorylation of cardiac myosin regulatory light chain: a promising new tool for treatment of cardiomyopathy. Biophys Rev. 2017;9:57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tobita T, Nomura S, Morita H, Ko T, Fujita T, Toko H, et al. Identification of MYLK3 mutations in familial dilated cardiomyopathy. Sci Rep. 2017;7:17495.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Hodatsu A, Fujino N, Uyama Y, Tsukamoto O, Imai-Okazaki A, Yamazaki S, et al. Impact of cardiac myosin light chain kinase gene mutation on development of dilated cardiomyopathy. ESC Heart Fail. 2019;6:406–15.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Mizutani H, Okamoto R, Moriki N, Konishi K, Taniguchi M, Fujita S, et al. Overexpression of myosin phosphatase reduces Ca2+ sensitivity of contraction and impairs cardiac function. Circ J. 2010;74:120–8.

    Article  CAS  PubMed  Google Scholar 

  182. Tan I, Ng CH, Lim L, Leung T. Phosphorylation of a novel myosin binding subunit of protein phosphatase 1 reveals a conserved mechanism in the regulation of actin cytoskeleton. J Biol Chem. 2001;276:21209–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of the Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, for the execution and support of our research. We also thank Dr. David J Hartshorne at the University of Arizona, Dr. Ferenc Erdődi at the University of Debrecen, and Dr. Kozo Kaibuchi at Nagoya University for their collaboration.

Author information

Authors and Affiliations

Authors

Contributions

M.I., R.O., H.I., Y.Z. and K.O. wrote the manuscript.

Corresponding author

Correspondence to Masaaki Ito.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, M., Okamoto, R., Ito, H. et al. Regulation of myosin light-chain phosphorylation and its roles in cardiovascular physiology and pathophysiology. Hypertens Res 45, 40–52 (2022). https://doi.org/10.1038/s41440-021-00733-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-021-00733-y

Keywords

Search

Quick links