Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superior lentiviral vectors designed for BSL-0 environment abolish vector mobilization

Abstract

Lentiviral vector mobilization following HIV-1 infection of vector-transduced cells poses biosafety risks to vector-treated patients and their communities. The self-inactivating (SIN) vector design has reduced, however, not abolished mobilization of integrated vector genomes. Furthermore, an earlier study demonstrated the ability of the major product of reverse transcription, a circular SIN HIV-1 vector comprising a single- long terminal repeat (LTR) to support production of high vector titers. Here, we demonstrate that configuring the internal vector expression cassette in opposite orientation to the LTRs abolishes mobilization of SIN vectors. This additional SIN mechanism is in part premised on induction of host PKR response to double-stranded RNAs comprised of mRNAs transcribed from cryptic transcription initiation sites around 3'SIN-LTR’s and the vector internal promoter. As anticipated, PKR response following transfection of opposite orientation vectors, negatively affects their titers. Importantly, shRNA-mediated knockdown of PKR rendered titers of SIN HIV-1 vectors comprising opposite orientation expression cassettes comparable to titers of conventional SIN vectors. High-titer vectors carrying an expression cassette in opposite orientation to the LTRs efficiently delivered and maintained high levels of transgene expression in mouse livers. This study establishes opposite orientation expression cassettes as an additional PKR-dependent SIN mechanism that abolishes vector mobilization from integrated and episomal SIN lentiviral vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morgan RA, Gray D, Lomova A, Kohn DB. Hematopoietic stem cell gene therapy: Progress and lessons learned. Cell Stem Cell. 2017;21:574–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Penati R, Fumagalli F, Calbi V, Bernardo ME, Aiuti A. Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. J Inherit Metab Dis. 2017;40:543–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oluwole OO, Davila ML. At the bedside: Clinical review of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies. J Leukoc Biol. 2016;100:1265–72.

    Article  CAS  PubMed  Google Scholar 

  4. Pollack SM, Lu H, Gnjatic S, Somaiah N, O’Malley RB, Jones RL, et al. First-in-human treatment with a dendritic cell-targeting lentiviral vector-expressing NY-ESO-1, LV305, induces deep, durable response in refractory metastatic synovial sarcoma patient. J Immunother (1991). 2017;40:302–6.

    CAS  Google Scholar 

  5. Yu SF, von Ruden T, Kantoff PW, Garber C, Seiberg M, Ruther U, et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci USA. 1986;83:3194–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shinya E, et al. A safe HIV vectors packaging system using the U3 deficient LTR. Gene therapy meeting cold spring harbor, p. 150. Cold Spring Harbor Press, New York, 1994.

  7. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM. Development of a self-inactivating lentivirus vector. J Virol. 1998;72:8150–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanawa H, Persons DA, Nienhuis AW. Mobilization and mechanism of transcription of integrated self-inactivating lentiviral vectors. J Virol. 2005;79:8410–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Logan AC, Haas DL, Kafri T, Kohn DB. Integrated self-inactivating lentiviral vectors produce full-length genomic transcripts competent for encapsidation and integration. J Virol. 2004;78:8421–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lucke S, Grunwald T, Uberla K. Reduced mobilization of Rev-responsive element-deficient lentiviral vectors. J Virol. 2005;79:9359–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma H, Kafri T. A single-LTR HIV-1 vector optimized for functional genomics applications. Mol Ther: J Am Soc Gene Ther. 2004;10:139–49.

    Article  CAS  Google Scholar 

  12. Liu YP, Vink MA, Westerink JT, Ramirez de Arellano E, Konstantinova P, Ter Brake O, et al. Titers of lentiviral vectors encoding shRNAs and miRNAs are reduced by different mechanisms that require distinct repair strategies. RNA. 2010;16:1328–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Romero Z, Urbinati F, Geiger S, Cooper AR, Wherley J, Kaufman ML et al. beta-globin gene transfer to human bone marrow for sickle cell disease. J Clin Invest. 2013;123:3317–30.

  14. Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM. A packaging cell line for lentivirus vectors. J Virol. 1999;73:576–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bayer M, Kantor B, Cockrell A, Ma H, Zeithaml B, Li X, et al. A large U3 deletion causes increased in vivo expression from a nonintegrating lentiviral vector. Mol Ther: J Am Soc Gene Ther. 2008;16:1968–76.

    Article  CAS  Google Scholar 

  16. Cockrell AS, van Praag H, Santistevan N, Ma H, Kafri T. The HIV-1 Rev/RRE system is required for HIV-1 5’ UTR cis elements to augment encapsidation of heterologous RNA into HIV-1 viral particles. Retrovirology. 2011;8:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72:8463–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu K, Ma H, McCown TJ, Verma IM, Kafri T. Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol Ther: J Am Soc Gene Ther. 2001;3:97–104.

    Article  CAS  Google Scholar 

  19. Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol. 2007;36:184–204.

    Article  CAS  PubMed  Google Scholar 

  20. Cockrell AS, Ma H, Fu K, McCown TJ, Kafri T. A trans-lentiviral packaging cell line for high-titer conditional self-inactivating HIV-1 vectors. Mol Ther: J Am Soc Gene Ther. 2006;14:276–84.

    Article  CAS  Google Scholar 

  21. Suwanmanee T, Ferris MT, Hu P, Gui T, Montgomery SA, Pardo-Manuel de Villena F, et al. Toward personalized gene therapy: Characterizing the host genetic control of lentiviral-vector-mediated hepatic gene delivery. Mol Ther Methods Clin Dev. 2017;5:83–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Butler SL, Hansen MS, Bushman FD. A quantitative assay for HIV DNA integration in vivo. Nat Med. 2001;7:631–4.

    Article  CAS  PubMed  Google Scholar 

  23. Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 2000;287:646–50.

    Article  CAS  PubMed  Google Scholar 

  24. Kantor B, Bayer M, Ma H, Samulski J, Li C, McCown T, et al. Notable reduction in illegitimate integration mediated by a PPT-deleted, nonintegrating lentiviral vector. Mol Ther: J Am Soc Gene Ther. 2011;19:547–56.

    Article  CAS  Google Scholar 

  25. Poon B, Chen IS. Human immunodeficiency virus type 1 (HIV-1) Vpr enhances expression from unintegrated HIV-1 DNA. J Virol. 2003;77:3962–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Negri D, Blasi M, LaBranche C, Parks R, Balachandran H, Lifton M, et al. Immunization with an SIV-based IDLV expressing HIV-1 Env 1086 clade C elicits durable humoral and cellular responses in Rhesus Macaques. Mol Ther: J Am Soc Gene Ther. 2016;24:2021–32.

    Article  CAS  Google Scholar 

  27. Suwanmanee T, Hu G, Gui T, Bartholomae CC, Kutschera I, von Kalle C et al. Integration-deficient lentiviral vectors expressing codon-optimized R338LhFIX restore normal hemostasis in hemophilia B mice. Mol Ther. 2014;22:567–74.

  28. Kantor B, Ma H, Webster-Cyriaque J, Monahan PE, Kafri T. Epigenetic activation of unintegrated HIV-1 genomes by gut-associated short chain fatty acids and its implications for HIV infection. Proc Natl Acad Sci USA. 2009;106:18786–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu P, Li Y, Sands MS, McCown T, Kafri T. Generation of a stable packaging cell line producing high-titer PPT-deleted integration-deficient lentiviral vectors. Molecular therapy. Methods Clin Dev. 2015;2:15025.

    Article  Google Scholar 

  30. Hu P, Li Y, Nikolaishvili-Feinberg N, Scesa G, Bi Y, Pan D, et al. Hematopoietic Stem cell transplantation and lentiviral vector-based gene therapy for Krabbe’s disease: Present convictions and future prospects. J Neurosci Res. 2016;94:1152–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Levasseur DN, Ryan TM, Pawlik KM, Townes TM. Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood. 2003;102:4312–9.

    Article  CAS  PubMed  Google Scholar 

  32. May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature. 2000;406:82–6.

    Article  CAS  PubMed  Google Scholar 

  33. Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science. 2001;294:2368–71.

    Article  CAS  PubMed  Google Scholar 

  34. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.

    Article  CAS  PubMed  Google Scholar 

  35. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 2006;12:342–7.

    Article  CAS  PubMed  Google Scholar 

  36. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80:148–58.

    Article  CAS  PubMed  Google Scholar 

  37. Somia N, Verma IM. Gene therapy: trials and tribulations. Nat Rev Genet. 2000;1:91–9.

    Article  CAS  PubMed  Google Scholar 

  38. Adair JE, Beard BC, Trobridge GD, Neff T, Rockhill JK, Silbergeld DL. et al. Extended survival of glioblastoma patients after chemoprotective HSC gene therapy. Sci Transl Med. 2012;4:133ra57

    PubMed  PubMed Central  Google Scholar 

  39. Booth C, Gaspar HB, Thrasher AJ. Treating Immunodeficiency through HSC Gene Therapy. Trends Mol Med. 2016;22:317–27.

    Article  CAS  PubMed  Google Scholar 

  40. Frey NV, Porter DL. CAR T-cells merge into the fast lane of cancer care. Am J Hematol. 2016;91:146–50.

    Article  CAS  PubMed  Google Scholar 

  41. Keeler AM, ElMallah MK, Flotte TR. Gene Therapy 2017: Progress and Future Directions. Clin Transl Sci. 2017;10:242–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. FDA approves hereditary blindness gene therapy. Nat Biotechnol. 2018; 36: 6.

  43. Dyer O. FDA panel recommends approval of first gene therapy in US. BMJ. 2017;358:j3443.

    Article  PubMed  Google Scholar 

  44. Sheridan C. First approval in sight for Novartis’ CAR-T therapy after panel vote. Nat Biotechnol. 2017;35:691–3.

    Article  CAS  PubMed  Google Scholar 

  45. Braun CJ, Boztug K, Paruzynski A, Witzel M, Schwarzer A, Rothe M. et al. Gene therapy for Wiskott-Aldrich syndrome--long-term efficacy and genotoxicity. Sci Transl Med. 2014;6:227ra33

    Article  PubMed  Google Scholar 

  46. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467:318–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Donahue RE, Kessler SW, Bodine D, McDonagh K, Dunbar C, Goodman S, et al. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med. 1992;176:1125–35.

    Article  CAS  PubMed  Google Scholar 

  48. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008;118:3143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med. 2010;16:198–204.

    Article  CAS  PubMed  Google Scholar 

  50. Marcucci KT, Jadlowsky JK, Hwang WT, Suhoski-Davis M, Gonzalez VE, Kulikovskaya I, et al. Retroviral and lentiviral safety analysis of gene-modified T cell products and infused HIV and oncology patients. Mol Ther: J Am Soc Gene Ther. 2017;26:269–79.

    Article  Google Scholar 

  51. Bannert N, Kurth R. Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA. 2004;101(Suppl 2):14572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dupressoir A, Lavialle C, Heidmann T. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta. 2012;33:663–71.

    Article  CAS  PubMed  Google Scholar 

  53. Hohn O, Hanke K, Bannert N. HERV-K(HML-2), the best preserved family of HERVs: Endogenization, expression, and implications in health and disease. Front Oncol. 2013;3:246.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lower R, Boller K, Hasenmaier B, Korbmacher C, Muller-Lantzsch N, Lower J, et al. Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proc Natl Acad Sci USA. 1993;90:4480–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nadeau MJ, Manghera M, Douville RN. Inside the envelope: Endogenous retrovirus-K Env as a biomarker and therapeutic target. Front Microbiol. 2015;6:1244.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G, et al. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res. 2006;16:1548–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee YN, Bieniasz PD. Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog. 2007;3:e10.

    Article  PubMed  PubMed Central  Google Scholar 

  58. An DS, Xie Y, Chen IS. Envelope gene of the human endogenous retrovirus HERV-W encodes a functional retrovirus envelope. J Virol. 2001;75:3488–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bjerregaard B, Lemmen JG, Petersen MR, Ostrup E, Iversen LH, Almstrup K, et al. Syncytin-1 and its receptor is present in human gametes. J Assist Reprod Genet. 2014;31:533–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Esnault C, Priet S, Ribet D, Vernochet C, Bruls T, Lavialle C, et al. A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc Natl Acad Sci USA. 2008;105:17532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Green BJ, Lee CS, Rasko JE. Biodistribution of the RD114/mammalian type D retrovirus receptor, RDR. J Gene Med. 2004;6:249–59.

    Article  CAS  PubMed  Google Scholar 

  62. Hummel J, Kammerer U, Muller N, Avota E, Schneider-Schaulies S. Human endogenous retrovirus envelope proteins target dendritic cells to suppress T-cell activation. Eur J Immunol. 2015;45:1748–59.

    Article  CAS  PubMed  Google Scholar 

  63. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21:704–12.

    Article  CAS  PubMed  Google Scholar 

  64. Halbert CL, Miller AD, McNamara S, Emerson J, Gibson RL, Ramsey B, et al. Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: Implications for gene therapy using AAV vectors. Hum Gene Ther. 2006;17:440–7.

    Article  CAS  PubMed  Google Scholar 

  65. Hewitt FC, Li C, Gray SJ, Cockrell S, Washburn M, Samulski RJ. Reducing the risk of adeno-associated virus (AAV) vector mobilization with AAV type 5 vectors. J Virol. 2009;83:3919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72:9873–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Poon B, Chang MA, Chen IS. Vpr is required for efficient Nef expression from unintegrated human immunodeficiency virus type 1 DNA. J Virol. 2007;81:10515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Butler SL, Johnson EP, Bushman FD. Human immunodeficiency virus cDNA metabolism: notable stability of two-long terminal repeat circles. J Virol. 2002;76:3739–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tareen SU, Kelley-Clarke B, Nicolai CJ, Cassiano LA, Nelson LT, Slough MM, et al. Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells. Mol Ther: J Am Soc Gene Ther. 2014;22:575–87.

    Article  CAS  Google Scholar 

  70. Hanawa H, Hargrove PW, Kepes S, Srivastava DK, Nienhuis AW, Persons DA. Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia. Blood. 2004;104:2281–90.

    Article  CAS  PubMed  Google Scholar 

  71. Miccio A, Cesari R, Lotti F, Rossi C, Sanvito F, Ponzoni M, et al. In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of beta-thalassemia. Proc Natl Acad Sci USA. 2008;105:10547–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pestina TI, Hargrove PW, Jay D, Gray JT, Boyd KM, Persons DA. Correction of murine sickle cell disease using gamma-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin. Mol Ther: J Am Soc Gene Ther. 2009;17:245–52.

    Article  CAS  Google Scholar 

  73. Puthenveetil G, Scholes J, Carbonell D, Qureshi N, Xia P, Zeng L, et al. Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood. 2004;104:3445–53.

    Article  CAS  PubMed  Google Scholar 

  74. Harwig A, Das AT, Berkhout B. HIV-1 RNAs: sense and antisense, large mRNAs and small siRNAs and miRNAs. Curr Opin HIV AIDS. 2015;10:103–9.

    Article  CAS  PubMed  Google Scholar 

  75. Landry S, Halin M, Lefort S, Audet B, Vaquero C, Mesnard JM, et al. Detection, characterization and regulation of antisense transcripts in HIV-1. Retrovirology. 2007;4:71.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Manghera M, Magnusson A, Douville RN. The sense behind retroviral anti-sense transcription. Virol J. 2017;14:9.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Michael NL, Vahey MT, d’Arcy L, Ehrenberg PK, Mosca JD, Rappaport J, et al. Negative-strand RNA transcripts are produced in human immunodeficiency virus type 1-infected cells and patients by a novel promoter downregulated by Tat. J Virol. 1994;68:979–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cooper AR, Lill GR, Gschweng EH, Kohn DB. Rescue of splicing-mediated intron loss maximizes expression in lentiviral vectors containing the human ubiquitin C promoter. Nucleic Acids Res. 2015;43:682–90.

    Article  CAS  PubMed  Google Scholar 

  79. Le Hir H, Nott A, Moore MJ. How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci. 2003;28:215–20.

    Article  PubMed  Google Scholar 

  80. Nott A, Meislin SH, Moore MJ. A quantitative analysis of intron effects on mammalian gene expression. RNA. 2003;9:607–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Valencia P, Dias AP, Reed R. Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc Natl Acad Sci USA. 2008;105:3386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Behringer RR, Hammer RE, Brinster RL, Palmiter RD, Townes TM. Two 3’ sequences direct adult erythroid-specific expression of human beta-globin genes in transgenic mice. Proc Natl Acad Sci USA. 1987;84:7056–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The following reagents were obtained through the National Institutes of Health (NIH) AIDS Research and Reference Reagent Program, Division of AIDS, the National Institute of Allergy and Infectious Diseases: the HIV-1 p24 monoclonal antibody (183-H12-5C) from Bruce Chesebro and Kathy Wehrly. The study was supported by UNC Flow Cytometry Core Facility, which is supported in part by P30 CA016086 Cancer Center Core Support Grant to the UNC Lineberger Comprehensive Cancer Center. The study was supported by NIH grants R01-HL128119 (to PH, YB, TS, MH, BZ, NJF, and TK), R01-DK058702 (to PH, YB, TS, MH, BZ, NJF, and TK). This study is dedicated to the US Marine Corps and the Gold Star families. In memory of Henryk Goldszmit, the doctor who stayed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tal Kafri.

Ethics declarations

Conflict of interest

TK is an inventor of a PPT-deleted vector-based technology owned by the University of North Carolina and licensed to a commercial entity. The other authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, P., Bi, Y., Ma, H. et al. Superior lentiviral vectors designed for BSL-0 environment abolish vector mobilization. Gene Ther 25, 454–472 (2018). https://doi.org/10.1038/s41434-018-0039-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-018-0039-2

Search

Quick links