Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New dihydronaphthothiophene derivatives by the biological transformation of seriniquinone using marine-derived actinomycete Streptomyces albogriseolus OM27-12

Abstract

Seriniquinone was originally isolated as a melanoma-selective anti-cancer agent from a culture broth of marine bacteria. Pharmacological studies on its selectivity and unique target are ongoing. A new dihydronaphthothiophene (1) was synthesized by the biological transformation of seriniquinone using marine-derived actinomycete Streptomyces albogriseolus OM27-12, and its derivatives (2–4) were chemically synthesized. Compounds 14 exhibited selective cytotoxic activity against melanoma and improved solubility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Kang HK, Seo CH, Park Y. Marine peptides and their anti-infective activities. Mar Drugs. 2015;13:618–54.

    Article  Google Scholar 

  2. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.

    Article  CAS  Google Scholar 

  3. Debbab A, Aly AH, Lin WH, Proksch P. Bioactive compounds from marine bacteria and fungi. Micro Biotechnol. 2010;3:544–63.

    Article  CAS  Google Scholar 

  4. Hughes CC, Yang YL, Liu WT, Dorrestein PC, La Clair JJ, Fenical W. Marinopyrrole A target elucidation by acyl dye transfer. J Am Chem Soc. 2009;131:12094–96.

    Article  CAS  Google Scholar 

  5. Jang KH, Nam SJ, Locke JB, Kauffman CA, Beatty DS, Paul LA, et al. Anthracimycin, a potent anthrax antibitotic from a marine-derived actinomycete. Angew Chem Int Ed Engl. 2013;52:7822–24.

    Article  CAS  Google Scholar 

  6. Fukuda T, Shinkai M, Sasaki E, Nagai K, Kurihara Y, Kanamoto A, et al. Graphiumins, new thiodiketopiperazines from the marine-derived fungus Graphium sp. OPMF00224. J Antibiot. 2015;68:620–27.

    Article  CAS  Google Scholar 

  7. Fukuda T, Takahashi M, Nagai K, Harunari E, Imada C, Tomoda H. Isomethoxyneihumicin, a new cytotoxic agent produced by marine Nocardiopsis alba KM6-1. J Antibiot. 2017;70:590–94.

    Article  CAS  Google Scholar 

  8. Fukuda T, Nagai K, Kanamoto A, Tomoda H. 2-Epi-anthracimycin, a new cytotoxic agent from the marine-derived actinomycete Streptomyces sp. OPMA00631. J Antibiot. 2020;73:548–53.

    Article  CAS  Google Scholar 

  9. Ohshiro T, Seki R, Fukuda T, Uchida R, Tomoda H. Celludinones, new inhibitors of sterol O-acyltransferase, produced by Talaromyces cellulolyticus BF-0307. J Antibiot. 2018;71:1000–7.

    Article  CAS  Google Scholar 

  10. Trzoss L, Fukuda T, Costa-Lotufo LV, Jimenez P, La Clair JJ, Fenical W. Seriniquinone, a selective anticancer agent, induces cell death by autophagocytosis, targeting the cancer-protective protein dermcidin. Proc Natl Acad Sci USA. 2014;111:14687–92.

    Article  CAS  Google Scholar 

  11. Moreira da Silva R, Carrão DB, Habenschus MD, Jimenez PC, Lopes NP, Fenical W, et al. Prediction of seriniquinone-drug interactions by in vitro inhibition of human cytochrome P450 enzymes. Toxicol Vitr. 2020;65:104820.

    Article  CAS  Google Scholar 

  12. Hammons JC, Trzoss L, Jimenez PC, Hirata AS, Costa-Lotufo LV, La Clair JJ, et al. Advance of seriniquinone analogues as melanoma agents. ACS Med Chem Lett. 2019;10:186–90.

    Article  CAS  Google Scholar 

  13. Guo Y, Zheng W, Rong X, Huang Y. A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol. 2008;58:149–59.

    Article  CAS  Google Scholar 

  14. Berridge M, Tan A. Trans-plasma membrane electron transport: a cellular assay for NADH-and NADPH-oxidase based on extracellular, superoxide-mediated reduction of the sulfonated tetrazolium salt WST-1. Protoplasma 1998;205:74–82.

    Article  CAS  Google Scholar 

  15. Fujii I, Ebizuka Y, Sankawa U. A novel anthraquinone ring cleavage enzyme from Aspergillus terreus. J Biochem. 1988;103:878–83.

    Article  CAS  Google Scholar 

  16. Le Texier L, Roy S, Fosse C, Neuwels M, Azerad R. A biosynthetic microbial ability applied for the oxidative ring cleavage of non-natural heterocyclic quinones. Tetrahedron Lett. 2001;42:4135–37.

    Article  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Number 19K05855 (T.F.) and the Front and Grant for Scientific Research from the Faculty of Agriculture, Kindai University (T.F.).

Author information

Authors and Affiliations

Authors

Contributions

K.I., T.T., K.N., Y.F., T.T., M.A., Y.T., and T.F. designed research; K.I., T.T., K.N., Y.F., T.T., and T.F. performed research; K.I., T.T., K.N., Y.F., T.T., and T.F. contributed new reagents/analytic tools; K.I., T.T., K.N., Y.F., T.T., M.A., Y.T., and T.F. analyzed data; and K.I., T.T., K.N., Y.F., T.T., and T.F. wrote the paper.

Corresponding author

Correspondence to Takashi Fukuda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, K., Tanaka, T., Nagai, K. et al. New dihydronaphthothiophene derivatives by the biological transformation of seriniquinone using marine-derived actinomycete Streptomyces albogriseolus OM27-12. J Antibiot 75, 9–15 (2022). https://doi.org/10.1038/s41429-021-00484-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-021-00484-5

This article is cited by

Search

Quick links