Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meteorin-β/Meteorin like/IL-41 attenuates airway inflammation in house dust mite-induced allergic asthma

Abstract

We sought to examine the regulatory effect of Meteorin-β (Metrnβ)/Meteorin like (Metrnl)/IL-41 on lung inflammation in allergic asthma. We found that Metrnβ was elevated significantly in asthmatic patients and in mice with allergic asthma induced by house dust mite (HDM) extract. Upon exposure to HDM, Metrnβ was secreted predominantly by airway epithelial cells and inflammatory cells, including macrophages and eosinophils. The increased Metrnβ effectively blocked the development of airway hyperreactivity (AHR) and decreased inflammatory cell airway infiltration and type 2 cytokine production, which was associated with downregulated DC-mediated adaptive immune responses. Moreover, Metrnβ impaired the maturation and function of bone marrow-derived dendritic cells in vitro. Asthmatic mice adoptively transferred with dendritic cells isolated from Metrnβ-treated allergic mice displayed decreased AHR, airway inflammation, and lung injury. Metrnβ also displayed anti-inflammatory properties in immunodeficient SCID mice with allergic asthma and in in vitro 3D ALI airway models. Moreover, blockade of Metrnβ by anti-Metrnβ antibody treatment promoted the development of allergic asthma. These results revealed the unappreciated protective roles of Metrnβ in alleviating DC-mediated Th2 inflammation in allergic asthma, providing the novel treatment strategy of therapeutic targeting of Metrnβ in allergic asthma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schatz M, Rosenwasser L. The allergic asthma phenotype. J Allergy Clin Immunol Pract. 2014;2:645–8. quiz 649

    Article  PubMed  Google Scholar 

  2. Christiansen SC, Zuraw BL. Treatment of hypertension in patients with asthma. N Engl J Med. 2019;381:1046–57.

    Article  CAS  PubMed  Google Scholar 

  3. Hekking PW, Wener RR, Amelink M, Zwinderman AH, Bouvy ML, Bel EH. The prevalence of severe refractory asthma. J Allergy Clin Immunol. 2015;135:896–902.

    Article  PubMed  Google Scholar 

  4. Zheng T, Yu J, Oh MH, Zhu Z. The atopic march: progression from atopic dermatitis to allergic rhinitis and asthma. Allergy Asthma Immunol Res. 2011;3:67–73.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mishra A, Yao X, Saxena A, Gordon EM, Kaler M, Cuento RA, et al. Low-density lipoprotein receptor-related protein 1 attenuates house dust mite-induced eosinophilic airway inflammation by suppressing dendritic cell-mediated adaptive immune responses. J Allergy Clin Immunol. 2018;142:1066–79.e1066.

    Article  CAS  PubMed  Google Scholar 

  6. Foster PS, Maltby S, Rosenberg HF, Tay HL, Hogan SP, Collison AM, et al. Modeling t(h) 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev. 2017;278:20–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun X, Hou T, Cheung E, Iu TN, Tam VW, Chu IM, et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma. Cell Mol Immunol. 2020;17:631–46.

    Article  CAS  PubMed  Google Scholar 

  8. Maes B, Smole U, Vanderkerken M, Deswarte K, Van Moorleghem J, Vergote K, et al. The ste-20 kinase taok3 controls the development hdm-induced asthma in mice. J Allergy Clin Immunol. 2021;21:01362–2.

    Google Scholar 

  9. Bel EH, Wenzel SE, Thompson PJ, Prazma CM, Keene ON, Yancey SW, et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med. 2014;371:1189–97.

    Article  PubMed  Google Scholar 

  10. Bjermer L, Lemiere C, Maspero J, Weiss S, Zangrilli J, Germinaro M. Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels: a randomized phase 3 study. Chest. 2016;150:789–98.

    Article  PubMed  Google Scholar 

  11. Harb H, Chatila TA. Mechanisms of dupilumab. Clin Exp Allergy. 2020;50:5–14.

    Article  CAS  PubMed  Google Scholar 

  12. Dong J, Wong CK, Cai Z, Jiao D, Chu M, Lam CW. Amelioration of allergic airway inflammation in mice by regulatory il-35 through dampening inflammatory dendritic cells. Allergy. 2015;70:921–32.

    Article  CAS  PubMed  Google Scholar 

  13. Khare A, Krishnamoorthy N, Oriss TB, Fei M, Ray P, Ray A. Cutting edge: inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce foxp3 de novo in CD4+ T cells and promote airway tolerance. J Immunol. 2013;191:25–29.

    Article  CAS  PubMed  Google Scholar 

  14. Mazzini E, Massimiliano L, Penna G, Rescigno M. Oral tolerance can be established via gap junction transfer of fed antigens from cx3cr1+ macrophages to cd103+ dendritic cells. Immunity. 2014;40:248–61.

    Article  CAS  PubMed  Google Scholar 

  15. Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, et al. Conventional and monocyte-derived cd11b(+) dendritic cells initiate and maintain t helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 2013;38:322–35.

    Article  CAS  PubMed  Google Scholar 

  16. Lambrecht BN, Hammad H. Dendritic cell and epithelial cell interactions at the origin of murine asthma. Ann Am Thorac Soc. 2014;11(Suppl 5):S236–S243.

    Article  PubMed  Google Scholar 

  17. Julia V, Hessel EM, Malherbe L, Glaichenhaus N, O'Garra A, Coffman RL. A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific t cells long after antigen exposure. Immunity. 2002;16:271–83.

    Article  CAS  PubMed  Google Scholar 

  18. Baht GS, Bareja A, Lee DE, Rao RR, Huang R, Huebner JL, et al. Meteorin-like facilitates skeletal muscle repair through a stat3/igf-1 mechanism. Nat Metab. 2020;2:278–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li ZY, Song J, Zheng SL, Fan MB, Guan YF, Qu Y, et al. Adipocyte metrnl antagonizes insulin resistance through pparγ signaling. Diabetes. 2015;64:4011–22.

    Article  CAS  PubMed  Google Scholar 

  20. Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014;157:1279–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ushach I, Arrevillaga-Boni G, Heller GN, Pone E, Hernandez-Ruiz M, Catalan-Dibene J, et al. Meteorin-like/meteorin-β is a novel immunoregulatory cytokine associated with inflammation. J Immunol. 2018;201:3669–76.

    Article  CAS  PubMed  Google Scholar 

  22. Ushach I, Burkhardt AM, Martinez C, Hevezi PA, Gerber PA, Buhren BA, et al. Meteorin-like is a cytokine associated with barrier tissues and alternatively activated macrophages. Clin Immunol. 2015;156:119–27.

    Article  CAS  PubMed  Google Scholar 

  23. Kerget B, Afşin DE, Kerget F, Aşkın S, Akgün M. Is metrnl an adipokine İnvolved in the anti-inflammatory response to acute exacerbations of copd? Lung. 2020;198:307–14.

    Article  CAS  PubMed  Google Scholar 

  24. Jung TW, Lee SH, Kim HC, Bang JS, Abd El-Aty AM, Hacımüftüoğlu A, et al. Metrnl attenuates lipid-induced inflammation and insulin resistance via ampk or pparδ-dependent pathways in skeletal muscle of mice. Exp Mol Med. 2018;50:122–11.

    Article  PubMed Central  Google Scholar 

  25. Rupérez C, Ferrer-Curriu G, Cervera-Barea A, Florit L, Guitart-Mampel M, Garrabou G, et al. Meteorin-like/meteorin-β protects heart against cardiac dysfunction. J Exp Med. 2021;218:e20201206.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bridgewood C, Russell T, Weedon H, Baboolal T, Watad A, Sharif K, et al. The novel cytokine metrnl/il-41 is elevated in psoriatic arthritis synovium and inducible from both entheseal and synovial fibroblasts. Clin Immunol. 2019;208:108253.

    Article  CAS  PubMed  Google Scholar 

  27. Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest. 2016;126:3279–95.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chu DK, Jimenez-Saiz R, Verschoor CP, Walker TD, Goncharova S, Llop-Guevara A, et al. Indigenous enteric eosinophils control dcs to initiate a primary th2 immune response in vivo. J Exp Med. 2014;211:1657–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hashimoto T, Mishra SK, Olivry T, Yosipovitch G. Periostin, an emerging player in itch sensation. J Invest Dermatol. 2021;141:2338–43.

    Article  CAS  PubMed  Google Scholar 

  30. Webb DC, Mahalingam S, Cai Y, Matthaei KI, Donaldson DD, Foster PS. Antigen-specific production of interleukin (il)-13 and il-5 cooperate to mediate il-4ralpha-independent airway hyperreactivity. Eur J Immunol. 2003;33:3377–85.

    Article  CAS  PubMed  Google Scholar 

  31. Yi S, Zhai J, Niu R, Zhu G, Wang M, Liu J, et al. Eosinophil recruitment is dynamically regulated by interplay among lung dendritic cell subsets after allergen challenge. Nat Commun. 2018;9:3879.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Boonpiyathad T, Tantilipikorn P, Ruxrungtham K, Pradubpongsa P, Mitthamsiri W, Piedvache A, et al. Il-10-producing innate lymphoid cells increased in patients with house dust mite allergic rhinitis following immunotherapy. J Allergy Clin Immunol. 2020;147:1507–10.

    Article  PubMed  Google Scholar 

  33. Morita H, Kubo T, Rückert B, Ravindran A, Soyka MB, Rinaldi AO, et al. Induction of human regulatory innate lymphoid cells from group 2 innate lymphoid cells by retinoic acid. J Allergy Clin Immunol. 2019;143:2190–201.e2199.

    Article  CAS  PubMed  Google Scholar 

  34. Hu C, Zhang X, Song P, Yuan YP, Kong CY, Wu HM, et al. Meteorin-like protein attenuates doxorubicin-induced cardiotoxicity via activating camp/pka/sirt1 pathway. Redox Biol. 2020;37:101747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zuo L, Ge S, Ge Y, Li J, Zhu B, Zhang Z, et al. The adipokine metrnl ameliorates chronic colitis in il-10−/− mice by attenuating mesenteric adipose tissue lesions during spontaneous colitis. J Crohns Colitis. 2019;13:931–41.

    Article  PubMed  Google Scholar 

  36. Yao X, Yan X, Jiang X, Jiang J, Jia M, Huang M. Il-4/13-induced up-regulation of METEORIN-LIKE (ML) in alveolar macrophages promotes epithelial CCR3 expression. Eur Respiratory J. 2017;50:PA3552

    Google Scholar 

  37. Spacova I, Petrova MI, Fremau A, Pollaris L, Vanoirbeek J, Ceuppens JL, et al. Intranasal administration of probiotic lactobacillus rhamnosus gg prevents birch pollen-induced allergic asthma in a murine model. Allergy. 2019;74:100–10.

    Article  CAS  PubMed  Google Scholar 

  38. Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH, et al. Critical role for il-13 in the development of allergen-induced airway hyperreactivity. J Immunol. 2001;167:4668–75.

    Article  CAS  PubMed  Google Scholar 

  39. Hu J, He A, Yue X, Zhou M, Zhou Y. METRNL reduced inflammation in sepsis-induced renal injury via pparδ-dependent pathways. Food Sci Technol. 2021. https://doi.org/10.1590/fst.61821.

  40. Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MA, Kool M, et al. Inflammatory dendritic cells-not basophils-are necessary and sufficient for induction of th2 immunity to inhaled house dust mite allergen. J Exp Med. 2010;207:2097–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bando JK, Gilfillan S, Di Luccia B, Fachi JL, Sécca C, Cella M, et al. Ilc2s are the predominant source of intestinal ilc-derived il-10. J Exp Med. 2020;217:e20191520.

  42. Wang S, Xia P, Chen Y, Qu Y, Xiong Z, Ye B, et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell. 2017;171:201–216.e218.

    Article  CAS  PubMed  Google Scholar 

  43. Hou YJ, Okuda K, Edwards CE, Martinez DR, Asakura T, Dinnon KH, et al. Sars-cov-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell. 2020;182:429–446.e414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Siddiqui S, Johansson K, Joo A, Bonser LR, Koh KD, Le Tonqueze O, et al. Epithelial mir-141 regulates il-13-induced airway mucus production. JCI Insight. 2021;6:e139019.

    Article  PubMed Central  Google Scholar 

  45. Bodas M, Moore AR, Subramaniyan B, Georgescu C, Wren JD, Freeman WM, et al. Cigarette smoke activates notch3 to promote goblet cell differentiation in human airway epithelial cells. Am J Respir Cell Mol Biol. 2021;64:426–40.

    Article  CAS  PubMed  Google Scholar 

  46. Glöckner M, Marwitz S, Rohmann K, Watz H, Nitschkowski D, Rupp J, et al. Haemophilus influenzae causes cellular trans-differentiation in human bronchial epithelia. Innate Immun. 2021;27:251–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kistemaker LE, Hiemstra PS, Bos IS, Bouwman S, van den Berge M, Hylkema MN, et al. Tiotropium attenuates il-13-induced goblet cell metaplasia of human airway epithelial cells. Thorax. 2015;70:668–76.

    Article  PubMed  Google Scholar 

  48. Gill MA. The role of dendritic cells in asthma. J Allergy Clin Immunol. 2012;129:889–901.

    Article  CAS  PubMed  Google Scholar 

  49. O’Boyle G, Brain JG, Kirby JA, Ali S. Chemokine-mediated inflammation: Identification of a possible regulatory role for ccr2. Mol Immunol. 2007;44:1944–53.

    Article  PubMed  Google Scholar 

  50. Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol. 2018;15:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu J, Dong J, Ji L, Jiang P, Leung TF, Liu D, et al. Anti-allergic inflammatory activity of interleukin-37 is mediated by novel signaling cascades in human eosinophils. Front Immunol. 2018;9:1445.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research project was supported by a Direct Grant for Research 2021/2022 (Medicine Panel), project code: 2020.011, The Chinese University of Hong Kong, Hong Kong, China. The funders of the study had no involvement in the study design, data collection, data analysis, interpretation, writing of the report, or decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Contributions

XG and C-KW designed the experiments. C-KW obtained the funding. T-FL and GW-KW helped with the clinical experiments. XG, MYC, EJY, IM-TC, MS-MT, BC-LC, JWL, and XF performed the experiments and analyzed the data. XG and C-KW wrote the manuscript. W-HK, CW-KL, and LL revised and edited the manuscript.

Corresponding author

Correspondence to Chun-Kwok Wong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Leung, TF., Wong, G.WK. et al. Meteorin-β/Meteorin like/IL-41 attenuates airway inflammation in house dust mite-induced allergic asthma. Cell Mol Immunol 19, 245–259 (2022). https://doi.org/10.1038/s41423-021-00803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-021-00803-8

Keywords

This article is cited by

Search

Quick links