Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autophagy receptor CCDC50 tunes the STING-mediated interferon response in viral infections and autoimmune diseases

A Correction to this article was published on 15 October 2021

This article has been updated

Abstract

DNA sensing and timely activation of interferon (IFN)-mediated innate immunity are crucial for the defense against DNA virus infections and the clearance of abnormal cells. However, overactivation of immune responses may lead to tissue damage and autoimmune diseases; therefore, these processes must be intricately regulated. STING is the key adaptor protein, which is activated by cyclic GMP-AMP, the second messenger derived from cGAS-mediated DNA sensing. Here, we report that CCDC50, a newly identified autophagy receptor, tunes STING-directed type I IFN signaling activity by delivering K63-polyubiquitinated STING to autolysosomes for degradation. Knockout of CCDC50 significantly increases herpes simplex virus 1 (HSV-1)- or DNA ligand-induced production of type I IFN and proinflammatory cytokines. Ccdc50-deficient mice show increased production of IFN, decreased viral replication, reduced cell infiltration, and improved survival rates compared with their wild-type littermates when challenged with HSV-1. Remarkably, the expression of CCDC50 is downregulated in systemic lupus erythematosus (SLE), a chronic autoimmune disease. CCDC50 levels are negatively correlated with IFN signaling pathway activation and disease severity in human SLE patients. CCDC50 deficiency potentiates the cGAS-STING-mediated immune response triggered by SLE serum. Thus, our findings reveal the critical role of CCDC50 in the immune regulation of viral infections and autoimmune diseases and provide insights into the therapeutic implications of CCDC50 manipulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Publicly available datasets were downloaded from the GEO database (GSE61635, GSE121239, GSE72509, GSE65391, GSE49454, and GSE72798) [39,40,41,42,43]. All of the other data supporting this research are included in the article and Supplementary information.

Change history

References

  1. Chan YK, Gack MU. Viral evasion of intracellular DNA and RNA sensing. Nat Rev Microbiol. 2016;14:360–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020;15:493–518.

    Article  CAS  PubMed  Google Scholar 

  3. Qian C, Cao X. Regulation of Toll-like receptor signaling pathways in innate immune responses. Ann N Y Acad Sci. 2013;1283:67–74.

    Article  CAS  PubMed  Google Scholar 

  4. Yoneyama M, Onomoto K, Jogi M, Akaboshi T, Fujita T. Viral RNA detection by RIG-I-like receptors. Curr Opin Immunol. 2015;32:48–53.

    Article  CAS  PubMed  Google Scholar 

  5. Chan YK, Gack MU. RIG-I-like receptor regulation in virus infection and immunity. Curr Opin Virol. 2015;12:7–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nie Y, Wang YY. Innate immune responses to DNA viruses. Protein Cell. 2013;4:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20:95–112.

    Article  CAS  PubMed  Google Scholar 

  8. Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity. 2008;29:538–50.

    Article  CAS  PubMed  Google Scholar 

  9. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate. Immun Pathw Immun. 2020;53:43–53.

    CAS  Google Scholar 

  11. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339:826–30.

    Article  CAS  PubMed  Google Scholar 

  12. Jin L, Waterman PM, Jonscher KR, Short CM, Reisdorph NA, Cambier JC. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol. 2008;28:5014–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun W, Li Y, Chen L, Chen H, You F, Zhou X, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci USA. 2009;106:8653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell SL, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature. 2019;569:718–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bertsias GK, Pamfil C, Fanouriakis A, Boumpas DT. Diagnostic criteria for systemic lupus erythematosus: has the time come? Nat Rev Rheumatol. 2013;9:687–94.

    Article  PubMed  Google Scholar 

  16. Zharkova O, Celhar T, Cravens PD, Satterthwaite AB, Fairhurst AM, Davis LS. Pathways leading to an immunological disease: systemic lupus erythematosus. Rheumatology (Oxford). 2017;56:i55–i66.

    Article  CAS  Google Scholar 

  17. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ronnblom L, Leonard D. Interferon pathway in SLE: one key to unlocking the mystery of the disease. Lupus Sci Med. 2019;6:e000270.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, et al. Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med. 2020;382:211–21.

    Article  CAS  PubMed  Google Scholar 

  20. Martinez J, Cunha LD, Park S, Yang M, Lu Q, Orchard R, et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature. 2016;533:115–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou XJ, Klionsky DJ, Zhang H. Podocytes and autophagy: a potential therapeutic target in lupus nephritis. Autophagy. 2019;15:908–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hou P, Yang K, Jia P, Liu L, Lin Y, Li Z, et al. A novel selective autophagy receptor, CCDC50, delivers K63 polyubiquitination-activated RIG-I/MDA5 for degradation during viral infection. Cell Res. 2021;31:62–79.

  23. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41.

    Article  CAS  PubMed  Google Scholar 

  24. Watson RO, Manzanillo PS, Cox JS. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell. 2012;150:803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orvedahl A, MacPherson S, Sumpter R JR, Tallóczy Z, Zou Z, Levine B. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe. 2010;7:115–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol. 2009;10:1215–21.

    Article  CAS  PubMed  Google Scholar 

  27. Iwasaki A. Role of autophagy in innate viral recognition. Autophagy. 2007;3:354–6.

    Article  CAS  PubMed  Google Scholar 

  28. Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin KQ, et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA. 2007;104:14050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16:90–97.

    Article  CAS  PubMed  Google Scholar 

  30. Bronietzki AW, Schuster M, Schmitz I. Autophagy in T-cell development, activation and differentiation. Immunol Cell Biol. 2015;93:25–34.

    Article  CAS  PubMed  Google Scholar 

  31. Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med. 2020;383:1564–76.

    Article  CAS  PubMed  Google Scholar 

  32. Qi YY, Zhou XJ, Zhang H. Autophagy and immunological aberrations in systemic lupus erythematosus. Eur J Immunol. 2019;49:523–33.

    Article  CAS  PubMed  Google Scholar 

  33. Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy. 2020;16:3–17.

    Article  CAS  PubMed  Google Scholar 

  34. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity. 2010;33:765–76.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Hu MM, Wang YY, Shu HB. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J Biol Chem. 2012;287:28646–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A, et al. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell. 2006;124:1183–95.

    Article  CAS  PubMed  Google Scholar 

  37. Bohgaki M, Tsukiyama T, Nakajima A, Maruyama S, Watanabe M, Koike T, et al. Involvement of Ymer in suppression of NF-kappaB activation by regulated interaction with lysine-63-linked polyubiquitin chain. Biochim Biophys Acta. 2008;1783:826–37.

    Article  CAS  PubMed  Google Scholar 

  38. Tsuchiya Y, Jounai N, Takeshita F, Ishii KJ, Mizuguchi K. Ligand-induced ordering of the C-terminal tail primes STING for phosphorylation by TBK1. EBioMedicine. 2016;9:87–96.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Toro-Domínguez D, Martorell-Marugán J, Goldman D, Petri M, Carmona-Sáez P, Alarcón-Riquelme ME. Stratification of systemic lupus erythematosus patients into three groups of disease activity progression according to longitudinal gene expression. Arthritis Rheumatol. 2018;70:2025–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hung T, Pratt GA, Sundararaman B, Townsend MJ, Chaivorapol C, Bhangale T, et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science. 2015;350:455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J, Edens M, et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell. 2016;165:551–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chiche L, Jourde-Chiche N, Whalen E, Presnell S, Gersuk V, Dang K, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol. 2014;66:1583–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ducreux J, Houssiau FA, Vandepapelière P, Jorgensen C, Lazaro E, Spertini F, et al. Interferon alpha kinoid induces neutralizing anti-interferon alpha antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon alpha kinoid phase I/II study. Rheumatology (Oxford). 2016;55:1901–5.

    Article  CAS  Google Scholar 

  44. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91.

    Article  CAS  PubMed  Google Scholar 

  45. Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–9.

    Article  CAS  PubMed  Google Scholar 

  46. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature. 2007;446:916–20.

    Article  CAS  PubMed  Google Scholar 

  47. Hayman TJ, Hsu AC, Kolesnik TB, Dagley LF, Willemsen J, Tate MD, et al. RIPLET and not TRIM25 is required for endogenous RIG-I-dependent anti-viral responses. Immunol Cell Biol. 2019;97:840–52.

  48. Bai Y, Tong Y, Liu Y, Hu H. Self-dsDNA in the pathogenesis of systemic lupus erythematosus. Clin Exp Immunol. 2018;191:1–10.

    Article  CAS  PubMed  Google Scholar 

  49. Soni C, Reizis B. DNA as a self-antigen: nature and regulation. Curr Opin Immunol. 2018;55:31–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ahn J, Gutman D, Saijo S, Barber GN. STING manifests self DNA-dependent inflammatory disease. Proc Natl Acad Sci USA. 2012;109:19386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015;15:760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ahn J, Barber GN. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Curr Opin Immunol. 2014;31:121–6.

    Article  CAS  PubMed  Google Scholar 

  53. Thim-Uam A, Prabakaran T, Tansakul M, Makjaroen J, Wongkongkathep P, Chantaravisoot N, et al. STING mediates lupus via the activation of conventional dendritic cell maturation and plasmacytoid dendritic cell differentiation. iScience. 2020;23:101530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kato Y, Park J, Takamatsu H, Konaka H, Aoki W, Aburaya S, et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann Rheum Dis. 2018;77:1507–15.

    Article  CAS  PubMed  Google Scholar 

  55. Gao D, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci USA. 2015;112:E5699–5705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S, Stolzenberg MC, et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest. 2014;124:5516–20.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez G, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371:507–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. König N, Fiehn C, Wolf C, Schuster M, Cura Costa E, Tüngler V, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis. 2017;76:468–72.

    Article  PubMed  CAS  Google Scholar 

  59. Motwani M, McGowan J, Antonovitch J, Gao KM, Jiang Z, Sharma S, et al. cGAS-STING pathway does not promote autoimmunity in murine models of SLE. Front Immunol. 2021;12:605930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharma S, Campbell AM, Chan J, Schattgen SA, Orlowski GM, Nayar R, et al. Suppression of systemic autoimmunity by the innate immune adaptor STING. Proc Natl Acad Sci USA. 2015;112:E710–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Prabakaran T, Bodda C, Krapp C, Zhang BC, Christensen MH, Sun C, et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J. 2018;37:e97858.

  62. Gui X, Yang H, Li T, Tan X, Shi P, Li M, et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature. 2019;567:262–6.

    Article  CAS  PubMed  Google Scholar 

  63. Liu D, Wu H, Wang C, Li Y, Tian H, Siraj S, et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 2019;26:1735–49.

    Article  CAS  PubMed  Google Scholar 

  64. Worah K, Mathan T, Vu Manh TP, Keerthikumar S, Schreibelt G, Tel J, et al. Proteomics of human dendritic cell subsets reveals subset-specific surface markers and differential inflammasome function. Cell Rep. 2016;16:2953–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron. 1997;19:755–9.

  66. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23:1846–7.

    Article  PubMed  CAS  Google Scholar 

  67. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300.

  69. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hou P, Chen S, Wang S, Yu X, Chen Y, Jiang M, et al. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci Rep. 2015;5:15577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hou P, Jia P, Yang K, Li Z, Tian T, Lin Y, et al. An unconventional role of an ASB family protein in NF-kappaB activation and inflammatory response during microbial infection and colitis. Proc Natl Acad Sci USA. 2021;118:e2015416118.

  73. Hu MM, Yang Q, Xie XQ, Liao CY, Lin H, Liu TT, et al. Sumoylation promotes the stability of the DNA sensor cGAS and the adaptor STING to regulate the kinetics of response to DNA virus. Immunity. 2016;45:555–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (#81620108020 to DG and #81801574 to PH), Guangdong Province “Pearl River Talent Plan” Innovation and Entrepreneurship Team Project (2019ZT08Y464 to CL), and Shenzhen Science and Technology Program (#JCYJ20200109142201695 and #KQTD20180411143323605 to DG and #JCYJ20190807161415336 to PH). DG is also supported by the Guangdong Zhujiang Talents Programme and the National Ten-thousand Talents Programme.

Author information

Authors and Affiliations

Authors

Contributions

DG conceived and supervised the research; DG and PH designed the experiments and wrote the manuscript. PH, YL, ZL, RL, PJ, and YW performed the biochemical, cell biological, and in vitro experiments; ZL, PJ, and YW performed the mouse experiments and viral infections; TT analyzed the data and public datasets. LC, XZ, ZZ, CL, and JG helped with reagents, materials, patient samples, and discussions.

Corresponding author

Correspondence to Deyin Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, P., Lin, Y., Li, Z. et al. Autophagy receptor CCDC50 tunes the STING-mediated interferon response in viral infections and autoimmune diseases. Cell Mol Immunol 18, 2358–2371 (2021). https://doi.org/10.1038/s41423-021-00758-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-021-00758-w

Keywords

This article is cited by

Search

Quick links