Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics

Abstract

Bispecific antibodies (bsAbs) refer to a large family of molecules that recognize two different epitopes or antigens. Although a series of challenges, especially immunogenicity and chain mispairing issues, once hindered the development of bsAbs, they have been gradually overcome with the help of rapidly developing technologies in the past 5 decades. In the meantime, an increasing number of bsAb platforms have been designed to satisfy different clinical demands. Currently, numerous preclinical and clinical trials are underway, portraying a promising future for bsAb-based cancer treatment. Nevertheless, bsAb drugs still face enormous challenges in their application as cancer therapeutics, including tumor heterogeneity and mutational burden, intractable tumor microenvironment (TME), insufficient costimulatory signals to activate T cells, the necessity for continuous injection, fatal systemic side effects, and off-target toxicities to adjacent normal cells. Therefore, we provide several strategies as solutions to these issues, which comprise generating multispecific bsAbs, discovering neoantigens, combining bsAbs with other anticancer therapies, exploiting natural killer (NK)-cell-based bsAbs and producing bsAbs in situ. In this review, we mainly discuss previous and current challenges in bsAb development and underscore corresponding strategies, with a brief introduction of several typical bsAb formats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Apetoh, L., Ladoire, S., Coukos, G. & Ghiringhelli, F. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure? Ann. Oncol. 26, 1813–1823 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Brekke, O. H. & Sandlie, I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat. Rev. Drug Discov. 2, 52–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23, 1147–1157 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Hicklin, D. J. & Ellis, L. M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011–1027 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Henricks, L. M., Schellens, J. H., Huitema, A. D. & Beijnen, J. H. The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat. Rev. 41, 859–867 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Topp, M. S. et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 16, 57–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Kantarjian, H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu, Y., Choi, S. H. & Shah, K. Multifunctional receptor-targeting antibodies for cancer therapy. Lancet Oncol. 16, e543–e554 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Thakur, A., Huang, M. & Lum, L. G. Bispecific antibody based therapeutics: strengths and challenges. Blood Rev. 32, 339–347 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Krishnamurthy, A. & Jimeno, A. Bispecific antibodies for cancer therapy: a review. Pharm. Ther. 185, 122–134 (2018).

    Article  CAS  Google Scholar 

  11. Viardot, A. & Bargou, R. Bispecific antibodies in haematological malignancies. Cancer Treat. Rev. 65, 87–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Tiller, K. E. & Tessier, P. M. Advances in antibody design. Annu. Rev. Biomed. Eng. 17, 191–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suurs, F. V., Lub-de Hooge, M. N., de Vries, E. G. E. & de Groot, D. J. A. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol. Ther. 201, 103–119 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Kontermann, R. E. & Brinkmann, U. Bispecific antibodies. Drug Discov. Today 20, 838–847 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Ayyar, B. V., Arora, S. & O'Kennedy, R. Coming-of-age of antibodies in cancer therapeutics. Trends Pharm. Sci. 37, 1009–1028 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Velasquez, M. P., Bonifant, C. L. & Gottschalk, S. Redirecting T cells to hematological malignancies with bispecific antibodies. Blood 131, 30–38 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kontermann, R. E. Strategies for extended serum half-life of protein therapeutics. Curr. Opin. Biotechnol. 22, 868–876 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, H., Saxena, A., Sidhu, S. S. & Wu, D. Fc engineering for developing therapeutic bispecific antibodies and novel scaffolds. Front. Immunol. 8, 38 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Herrington-Symes, A. P., Farys, M., Khalili, H. & Brocchini, S. Antibody fragments: prolonging circulation half-life special issue-antibody research. Adv. Biosci. Biotechnol. 4, 689–698 (2013).

    Article  CAS  Google Scholar 

  20. Stork, R., Campigna, E., Robert, B., Muller, D. & Kontermann, R. E. Biodistribution of a bispecific single-chain diabody and its half-life extended derivatives. J. Biol. Chem. 284, 25612–25619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nisonoff, A. & Rivers, M. M. Recombination of a mixture of univalent antibody fragments of different specificity. Arch. Biochem. Biophys. 93, 460–462 (1961).

    Article  CAS  PubMed  Google Scholar 

  22. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. Brennan, M., Davison, PF. & Paulus, H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 229, 81–83 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Lindhofer, H., Mocikat, R., Steipe, B. & Thierfelder, S. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J. Immunol. 155, 219–225 (1995).

    CAS  PubMed  Google Scholar 

  25. Burges, A. et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clin. Cancer Res. 13, 3899–3905 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Merchant, AM. et al. An efficient route to human bispecific IgG. Nat. Biotechnol. 16, 677–681 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Garber, K. Bispecific antibodies rise again. Nat. Rev. Drug Discov. 13, 799–801 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Pande, J., Szewczyk, M. M. & Grover, A. K. Phage display: concept, innovations, applications and future. Biotechnol. Adv. 28, 849–858 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Ridgway, JB., Presta, LG. & Carter, P. ‘Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9, 617–621 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Gunasekaran, K. et al. Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J. Biol. Chem. 285, 19637–19646 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atwell, S., Ridgway, JB., Wells, JA. & Carter, P. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J. Mol. Biol. 270, 26–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Schaefer, W. et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl Acad. Sci. USA 108, 11187–11192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, C. et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat. Biotechnol. 25, 1290–1297 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Orcutt, K. D. et al. A modular IgG-scFv bispecific antibody topology. Protein Eng. Des. Sel. 23, 221–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Eigenbrot, C. & Fuh, G. Two-in-one antibodies with dual action Fabs. Curr. Opin. Chem. Biol. 17, 400–405 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Fischer, N. et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat. Commun. 6, 6113 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Fan, G., Wang, Z., Hao, M. & Li, J. Bispecific antibodies and their applications. J. Hematol. Oncol. 8, 130 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ahamadi-Fesharaki, R. et al. Single-chain variable fragment-based bispecific antibodies: hitting two targets with one sophisticated arrow. Mol. Ther. Oncolytics 14, 38–56 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bannas, P., Hambach, J. & Koch-Nolte, F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front. Immunol. 8, 1603 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yuraszeck, T., Kasichayanula, S. & Benjamin, J. E. Translation and clinical development of bispecific T-cell engaging antibodies for cancer treatment. Clin. Pharm. Ther. 101, 634–645 (2017).

    Article  CAS  Google Scholar 

  42. Przepiorka, D. et al. FDA approval: blinatumomab. Clin. Cancer Res. 21, 4035–4039 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Sergey, M. et al. Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J. Mol. Biol. 293, 41–56 (1999).

    Article  Google Scholar 

  44. Moore, P. A. et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood 117, 4542–4551 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Brinkmann, U. & Kontermann, R. E. The making of bispecific antibodies. MAbs 9, 182–212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nitta, T., Stao, K., Yagita, H., Okumura, K. & Ishii, S. Preliminary trial of specific targeting therapy against malignant glioma. Lancet 335, 368–376 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Gast, G. C. D. et al. CD8 T cell activation after intravenous administration of CD3×CD19 bispecific antibody in patients with non-Hodgkin lymphoma. Cancer Immunol. Immunother. 40, 390–396 (1995).

    Article  PubMed  Google Scholar 

  48. Mack, M., Riethmüller, G. & Kufer, P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Immunology 92, 7021–7025 (1995).

    CAS  Google Scholar 

  49. Hartmann, F. et al. Treatment of refractory Hodgkin's disease with an anti-CD16 CD30 bispecific antibody. Blood 89, 2042–2047 (2019).

    Article  Google Scholar 

  50. Löffler, A. et al. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 95, 2098–2103 (2000).

    Article  PubMed  Google Scholar 

  51. Nagorsen, D., Kufer, P., Baeuerle, P. A. & Bargou, R. Blinatumomab: a historical perspective. Pharm. Ther. 136, 334–342 (2012).

    Article  CAS  Google Scholar 

  52. Bargou, R. et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321, 974–976 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Linke, R., Klein, A. & Seimetz, D. Catumaxomab: clinical development and future directions. MAbs 2, 129–136 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Heiss, M. M. et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J. Cancer 127, 2209–2221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hilal, T. & Prasad, V. Eliminating MRD - FDA approval of blinatumomab for B-ALL in complete remission. Nat. Rev. Clin. Oncol. 15, 727–728 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Velasquez, MP., Bonifant, CL. & Gottschalk, S. Redirecting T cells to hematological malignancies with bispecific antibodies. Blood 131, 30–38 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jackson, H. J. & Brentjens, R. J. Overcoming antigen escape with CAR T-cell Therapy. Cancer Discov. 5, 1238–1240 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zaja, F. et al. CD38, BCL-2, PD-1, and PD-1L expression in nodal peripheral T-cell lymphoma: Possible biomarkers for novel targeted therapies? Am. J. Hematol. 92, E1–E2 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Braig, F. et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 129, 100–104 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Gardner, R. et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127, 2406–2410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dimasi, N. et al. Development of a trispecific antibody designed to simultaneously and efficiently target three different antigens on tumor cells. Mol. Pharm. 12, 3490–3501 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Kugler, M. et al. A recombinant trispecific single-chain Fv derivative directed against CD123 and CD33 mediates effective elimination of acute myeloid leukaemia cells by dual targeting. Br. J. Haematol. 150, 574–586 (2010).

    Article  PubMed  CAS  Google Scholar 

  64. Hu, S. et al. Four-in-one antibodies have superior cancer inhibitory activity against EGFR, HER2, HER3, and VEGF through disruption of HER/MET crosstalk. Cancer Res. 75, 159–170 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Beck, A., Wurch, T., Bailly, C. & Corvaia, N. Strategies and challenges for the next generation of therapeutic antibodies. Nat. Rev. Immunol. 10, 345–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Ton, N. & Schumacher, R. D. S. Neoantigens in cancer immunotherapy. Science 348, 69–73 (2015).

    Article  CAS  Google Scholar 

  67. Yarchoan, M., Johnson, B. A. 3rd, Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 209–222 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, X. S. & Mardis, E. R. Applications of immunogenomics to cancer. Cell 168, 600–612 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fritsch, E. F. et al. HLA-binding properties of tumor neoepitopes in humans. Cancer Immunol. Res. 2, 522–529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yadav, M. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Loo, D. T. & Mather, J. P. Antibody-based identification of cell surface antigens: targets for cancer therapy. Curr. Opin. Pharmacol. 8, 627–631 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu Rev. Immunol. 26, 677–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Konstantinidou, M., Zarganes-Tzitzikas, T., Magiera-Mularz, K., Holak, T. A. & Domling, A. Immune checkpoint PD-1/PD-L1: is there life beyond antibodies? Angew. Chem. Int. Ed. Engl. 57, 4840–4848 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hettich, M., Lahoti, J., Prasad, S. & Niedermann, G. Checkpoint antibodies but not T cell-recruiting diabodies effectively synergize with TIL-inducing gamma-Irradiation. Cancer Res. 76, 4673–4683 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 27, 450–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Krupka, C. et al. Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia 30, 484–491 (2015).

    Article  PubMed  CAS  Google Scholar 

  78. Schreiner, J. et al. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor. Oncoimmunology 5, e1062969 (2016).

    Article  PubMed  CAS  Google Scholar 

  79. Osada, T. et al. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1. Cancer Immunol. Immunother. 64, 677–688 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Junttila, T. T. et al. Antitumor efficacy of a bispecific antibody that targets HER2 and activates T cells. Cancer Res. 74, 5561–5571 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Chang, C. H. et al. Combination therapy with bispecific antibodies and PD-1 blockade enhances the antitumor potency of T cells. Cancer Res. 77, 5384–5394 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Hou, W. et al. A novel tetravalent bispecific antibody targeting programmed death 1 and tyrosine-protein kinase Met for treatment of gastric cancer. Investig. New Drugs 37, 876–889 (2019).

    Article  CAS  Google Scholar 

  83. Koopmans, I. et al. A novel bispecific antibody for EGFR-directed blockade of the PD-1/PD-L1 immune checkpoint. Oncoimmunology 7, e1466016 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Koopmans, I. et al. Bispecific antibody approach for improved melanoma-selective PD-L1 immune checkpoint blockade. J. Investig. Dermatol. 139, 2343–2351.e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Herrmann, M. et al. Bifunctional PD-1 x alphaCD3 x alphaCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood 132, 2484–2494 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Herrera-Camacho, I. et al. Cancer immunotherapy using anti-TIM3/PD-1 bispecific antibody: a patent evaluation of EP3356411A1. Expert Opin. Ther. Pat. 29, 587–593 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Kvarnhammar, A. M. et al. The CTLA-4 x OX40 bispecific antibody ATOR-1015 induces anti-tumor effects through tumor-directed immune activation. J. Immunother. Cancer 7, 103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Appleman, L. J. & Boussiotis, V. A. T cell anergy and costimulation. Immunological Rev. 192, 161–180 (2003).

    Article  CAS  Google Scholar 

  89. Guo, H. et al. Extracellular domain of 4-1BBL enhanced the antitumoral efficacy of peripheral blood lymphocytes mediated by anti-CD3 x anti-Pgp bispecific diabody against human multidrug-resistant leukemia. Cell Immunol. 251, 102–108 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Fellermeier-Kopf, S. et al. Duokines: a novel class of dual-acting co-stimulatory molecules acting in cis or trans. Oncoimmunology 7, e1471442 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Arndt, C. et al. Costimulation improves the killing capability of T cells redirected to tumor cells expressing low levels of CD33: description of a novel modular targeting system. Leukemia 28, 59–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Urbanska, K. et al. Targeted cancer immunotherapy via combination of designer bispecific antibody and novel gene-engineered T cells. J. Transl. Med. 12, 347 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Choi, B. D. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 37, 1049–1058 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Darowski, D., Kobold, S., Jost, C. & Klein, C. Combining the best of two worlds: highly flexible chimeric antigen receptor adaptor molecules (CAR-adaptors) for the recruitment of chimeric antigen receptor T cells. MAbs 11, 621–631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Minutolo, N. G., Hollander, E. E. & Powell, D. J. Jr. The emergence of universal immune receptor T cell therapy for cancer. Front. Oncol. 9, 176 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li, J. et al. CD3 bispecific antibody–induced cytokine release is dispensable for cytotoxic T cell activity. Sci. Transl. Med. 11, 1–12 (2019).

    Google Scholar 

  97. Habif, G., Crinier, A., Andre, P., Vivier, E. & Narni-Mancinelli, E. Targeting natural killer cells in solid tumors. Cell Mol. Immunol. 16, 415–422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fang, F., Xiao, W. & Tian, Z. NK cell-based immunotherapy for cancer. Semin. Immunol. 31, 37–54 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Gleason, M. K. et al. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 123, 3016–3026 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schmohl, J. U., Gleason, M. K., Dougherty, P. R., Miller, J. S. & Vallera, D. A. Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells. Target Oncol. 11, 353–361 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Vallera, D. A. et al. Heterodimeric bispecific single-chain variable-fragment antibodies against EpCAM and CD16 induce effective antibody-dependent cellular cytotoxicity against human carcinoma cells. Cancer Biotherapy Radiopharmaceuticals 28, 274–282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gleason, M. K. et al. Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol. Cancer Therapeutics 11, 2674–2684 (2012).

    Article  CAS  Google Scholar 

  103. Gauthier, L. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713 e16 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Vallera, D. A. et al. IL15 trispecific killer engagers (TriKE) make natural killer cells specific to CD33+ targets while also inducing persistence, in vivo expansion, and enhanced function. Clin. Cancer Res. 22, 3440–3450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hodgins, J. J., Khan, S. T., Park, M. M., Auer, R. C. & Ardolino, M. Killers 2.0: NK cell therapies at the forefront of cancer control. J. Clin. Investig. 129, 3499–3510 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rezvani, K. & Rouce, R. H. The application of natural killer cell immunotherapy for the treatment of cancer. Front. Immunol. 6, 578 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Grigg, C. et al. Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers. Semin. Oncol. 43, 638–646 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Lawler, S. E., Speranza, M. C., Cho, C. F. & Chiocca, E. A. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 3, 841–849 (2017).

    Article  PubMed  Google Scholar 

  109. Yu, F. et al. T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol. Ther. 22, 102–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Fajardo, C. A. et al. Oncolytic adenoviral delivery of an EGFR-targeting T-cell engager improves antitumor efficacy. Cancer Res. 77, 2052–2063 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Speck, T. et al. Targeted BiTE expression by an oncolytic vector augments therapeutic efficacy against solid tumors. Clin. Cancer Res. 24, 2128–2137 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Freedman, J. D. et al. Oncolytic adenovirus expressing bispecific antibody targets T-cell cytotoxicity in cancer biopsies. EMBO Mol. Med. 9, 1067–1087 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dyer, A. et al. Oncolytic group B adenovirus enadenotucirev mediates non-apoptotic cell death with membrane disruption and release of inflammatory mediators. Mol. Ther. Oncolytics 4, 18–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Illingworth, S. et al. Preclinical safety studies of enadenotucirev, a chimeric group B human-specific oncolytic adenovirus. Mol. Ther. Oncolytics 5, 62–74 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. de Sostoa, J. et al. Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J. Immunother. Cancer 7, 19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Freedman, J. D. et al. An oncolytic virus expressing a T-cell engager simultaneously targets cancer and immunosuppressive stromal cells. Cancer Res. 78, 6852–6865 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Compte, M. et al. Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA x anti-CD3 diabodies from lentivirally transduced human lymphocytes. Cancer Gene Ther. 14, 380–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Bonifant, C. L. et al. CD123-engager T cells as a novel immunotherapeutic for acute myeloid leukemia. Mol. Ther. 24, 1615–1626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Iwahori, K. et al. Engager T cells: a new class of antigen-specific T cells that redirect bystander T cells. Mol. Ther. 23, 171–178 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Velasquez, M. P. et al. T cells expressing CD19-specific Engager Molecules for the Immunotherapy of CD19-positive Malignancies. Sci. Rep. 6, 27130 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, X. et al. Improved anti-leukemia activities of adoptively transferred T cells expressing bispecific T-cell engager in mice. Blood Cancer J. 6, e430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Velasquez, M. P. et al. CD28 and 41BB costimulation enhances the effector function of CD19-specific engager T cells. cancer. Immunol. Res. 5, 860–870 (2017).

    CAS  Google Scholar 

  123. Studeny, M. et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl Cancer Inst. 96, 1593–1603 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Aliperta, R. et al. Bispecific antibody releasing-mesenchymal stromal cell machinery for retargeting T cells towards acute myeloid leukemia blasts. Blood Cancer J. 5, e348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang, X. et al. Mesenchymal stromal cells as vehicles of tetravalent bispecific Tandab (CD3/CD19) for the treatment of B cell lymphoma combined with IDO pathway inhibitor D-1-methyl-tryptophan. J. Hematol. Oncol. 10, 56 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Yang, Y. et al. Bispecific CD3-HAC carried by E1A-engineered mesenchymal stromal cells against metastatic breast cancer by blocking PD-L1 and activating T cells. J. Hematol. Oncol. 12, 46 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chen, Z.-Y., He, C.-Y., Ehrhardt, A. & Kay, M. A. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol. Ther. 8, 495–500 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Kay, M. A., He, C. Y. & Chen, Z. Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol. 28, 1287–1289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pang, X. et al. Treatment of human B-cell lymphomas using minicircle DNA vector expressing Anti-CD3/CD20 in a mouse model. Hum. Gene Ther. 28, 216–225 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Carter, P. J. & Lazar, G. A. Next generation antibody drugs: pursuit of the ‘high-hanging fruit'. Nat. Rev. Drug Discov. 17, 197–223 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Elgundi, Z., Reslan, M., Cruz, E., Sifniotis, V. & Kayser, V. The state-of-play and future of antibody therapeutics. Adv. Drug Deliv. Rev. 122, 2–19 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwei Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Er Saw, P. & Song, E. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol Immunol 17, 451–461 (2020). https://doi.org/10.1038/s41423-020-0417-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0417-8

Keywords

This article is cited by

Search

Quick links