Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Abnormal expression of menin predicts the pathogenesis and poor prognosis of adult gliomas

Abstract

Several brain tumors is closely related to the disorder of chromatin histone modification, whereas the epigenetic mechanisms of the incidence of highly malignant adult glioma is not yet deeply studied. Deletion or mutation of the MEN1 gene, which encodes the epigenetic regulator menin, specifically induces poorly differentiated neuroendocrine tumors; however, the biological and clinical importance of MEN1 in the nervous system remains poorly understood. Menin expression was robustly activated in 44.4% of adult gliomas. Abnormally high expression of menin was closely related to a shorter median survival time of 20 months, a larger tumor volume and a higher percentage of Ki67 staining. Interestingly, menin expression was also activated in the cytoplasm of tumor cells (38.8%) and was also closely related to the poor prognosis of patients with glioma. Importantly, in a screening of 96 types of small-molecule targeted histone modification regulators, menin inhibitors were found to significantly block the proliferation of adult glioma cells. Our findings confirm that menin is a potential biomarker of poor prognosis in adult gliomas, independent of the WHO grade. Targeting menin may effectively inhibit certain gliomas, and this information provides novel insight into therapeutic strategies for glioma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neuro Oncol. 2016;18(suppl_5):v1–v75.

    Article  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl J Med. 2005;352:987–96.

    Article  CAS  Google Scholar 

  4. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  CAS  Google Scholar 

  5. Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas - implications for classification and therapy. Nat Rev Clin Oncol. 2017;14:434–52.

    Article  CAS  Google Scholar 

  6. Masui K, Mischel PS, Reifenberger G. Molecular classification of gliomas. Handb Clin Neurol. 2016;134:97–120.

    Article  Google Scholar 

  7. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. New Engl J Med. 2015;372:2499–508.

    Article  CAS  Google Scholar 

  8. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  Google Scholar 

  9. Zhang P, Kawakami H, Liu W, Zeng X, Strebhardt K, Tao K, et al. Targeting CDK1 and MEK/ERK overcomes apoptotic resistance in BRAF mutated human colorectal cancer. Mol Cancer Res. 2017;16:378–89.

  10. Funato K, Major T, Lewis PW, Allis CD, Tabar V. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science. 2014;346:1529–33.

    Article  CAS  Google Scholar 

  11. Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM, Marshall SA, et al. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med. 2017;23:493–500.

    Article  CAS  Google Scholar 

  12. Mohammad F, Weissmann S, Leblanc B, Pandey DP, Hojfeldt JW, Comet I, et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med. 2017;23:483–92.

    Article  CAS  Google Scholar 

  13. Esteller M. Epigenetics in cancer. New Engl J Med. 2008;358:1148–59.

    Article  CAS  Google Scholar 

  14. Yokoyama A, Somervaille TC, Smith KS, Rozenblatt-Rosen O, Meyerson M, Cleary ML. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell. 2005;123:207–18.

    Article  CAS  Google Scholar 

  15. Xu B, Zeng DQ, Wu Y, Zheng R, Gu L, Lin X, et al. Tumor suppressor menin represses paired box gene 2 expression via Wilms tumor suppressor protein-polycomb group complex. J Biol Chem. 2011;286:13937–44.

    Article  CAS  Google Scholar 

  16. Xu B, Li SH, Zheng R, Gao SB, Ding LH, Yin ZY, et al. Menin promotes hepatocellular carcinogenesis and epigenetically up-regulates Yap1 transcription. Proc Natl Acad Sci USA. 2013;110:17480–5.

    Article  CAS  Google Scholar 

  17. Wu JS, Zhang J, Zhuang DX, Yao CJ, Qiu TM, Lu JF, et al. Current status of cerebral glioma surgery in China. Chin Med J. 2011;124:2569–77.

    PubMed  Google Scholar 

  18. Matkar S, Thiel A, Hua X. Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem Sci. 2013;38:394–402.

    Article  CAS  Google Scholar 

  19. Lin KT, Wang YW, Chen CT, Ho CM, Su WH, Jou YS. HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res. 2012;18:4691–701.

    Article  CAS  Google Scholar 

  20. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331:1199–203.

    Article  CAS  Google Scholar 

  21. Crabtree JS, Scacheri PC, Ward JM, Garrett-Beal L, Emmert-Buck MR, Edgemon KA, et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc Natl Acad Sci USA. 2001;98:1118–23.

    Article  CAS  Google Scholar 

  22. Lemos MC, Harding B, Reed AA, Jeyabalan J, Walls GV, Bowl MR, et al. Genetic background influences embryonic lethality and the occurrence of neural tube defects in Men1 null mice: relevance to genetic modifiers. J Endocrinol. 2009;203:133–42.

    Article  CAS  Google Scholar 

  23. Shen X, Liu Y, Xu S, Zhao Q, Wu H, Guo X, et al. Menin regulates spinal glutamate-GABA balance through GAD65 contributing to neuropathic pain. Pharmacol Rep. 2014;66:49–55.

    Article  CAS  Google Scholar 

  24. Flynn N, Getz A, Visser F, Janes TA, Syed NI. Menin: a tumor suppressor that mediates postsynaptic receptor expression and synaptogenesis between central neurons of Lymnaea stagnalis. PLoS One. 2014;9:e111103.

    Article  Google Scholar 

  25. Getz AM, Visser F, Bell EM, Xu F, Flynn NM, Zaidi W, et al. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci Rep. 2016;6:31779.

    Article  CAS  Google Scholar 

  26. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011;20:66–78.

    Article  CAS  Google Scholar 

  27. Dreijerink KM, Groner AC, Vos ES, Font-Tello A, Gu L, Chi D, et al. Enhancer-mediated oncogenic function of the menin tumor suppressor in breast cancer. Cell Rep. 2017;18:2359–72.

    Article  CAS  Google Scholar 

  28. Malik R, Khan AP, Asangani IA, Cieslik M, Prensner JR, Wang X, et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat Med. 2015;21:344–52.

    Article  CAS  Google Scholar 

  29. Gao SB, Feng ZJ, Xu B, Wu Y, Yin P, Yang Y, et al. Suppression of lung adenocarcinoma through menin and polycomb gene-mediated repression of growth factor pleiotrophin. Oncogene. 2009;28:4095–104.

    Article  CAS  Google Scholar 

  30. Zhou C, Zhang Y, Dai J, Zhou M, Liu M, Wang Y, et al. Pygo2 functions as a prognostic factor for glioma due to its up-regulation of H3K4me3 and promotion of MLL1/MLL2 complex recruitment. Sci Rep. 2016;6:22066.

    Article  CAS  Google Scholar 

  31. Luo K, Luo D, Wen H. Homeobox genes gain trimethylation of histone H3 lysine 4 in glioblastoma tissue. Biosci Rep. 2016;36:e00347.

  32. Spyropoulou A, Gargalionis A, Dalagiorgou G, Adamopoulos C, Papavassiliou KA, Lea RW, et al. Role of histone lysine methyltransferases SUV39H1 and SETDB1 in gliomagenesis: modulation of cell proliferation, migration, and colony formation. Neuromolecular Med. 2014;16:70–82.

    Article  CAS  Google Scholar 

  33. Venneti S, Felicella MM, Coyne T, Phillips JJ, Gorovets D, Huse JT, et al. Histone 3 lysine 9 trimethylation is differentially associated with isocitrate dehydrogenase mutations in oligodendrogliomas and high-grade astrocytomas. J Neuropathol Exp Neurol. 2013;72:298–306.

    Article  CAS  Google Scholar 

  34. Yang YJ, Song TY, Park J, Lee J, Lim J, Jang H, et al. Menin mediates epigenetic regulation via histone H3 lysine 9 methylation. Cell Death Dis. 2013;4:e583.

    Article  CAS  Google Scholar 

  35. Cao Y, Liu R, Jiang X, Lu J, Jiang J, Zhang C, et al. Nuclear-cytoplasmic shuttling of menin regulates nuclear translocation of {beta}-catenin. Mol Cell Biol. 2009;29:5477–87.

    Article  CAS  Google Scholar 

  36. Wu Y, Feng ZJ, Gao SB, Matkar S, Xu B, Duan HB, et al. Interplay between menin and K-Ras in regulating lung adenocarcinoma. J Biol Chem. 2012;287:40003–11.

    Article  CAS  Google Scholar 

  37. Yan J, Yang Y, Zhang H, King C, Kan HM, Cai Y, et al. Menin interacts with IQGAP1 to enhance intercellular adhesion of beta-cells. Oncogene. 2009;28:973–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the valuable comments by Dr. Shu-Bin Gao from our laboratory.

Funding

This study was supported by grants from the National Natural Science Foundation of China (U1605224, 81572778 to G.J., and 81872215, 81502444 to Q.Z.), and partly supported by Natural Science Foundation of Fujian Province (2019J01015 to Q.Z.), the Fundamental Research Funds for the Central Universities (20720190078 to Q.Z.), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-10-0171 to Z.W.), the Technology Research Program of Jilin Province Health and Family Planning Commission (20152024 to Z.W.), the High Technology Research and Development Program of Jilin Province of China (2014G074 to Z.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi-Fan Zheng or Guang-Hui Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZF., Hong, XY., Zhu, LY. et al. Abnormal expression of menin predicts the pathogenesis and poor prognosis of adult gliomas. Cancer Gene Ther 27, 539–547 (2020). https://doi.org/10.1038/s41417-019-0127-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-019-0127-5

Search

Quick links