Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene expression profiles reveal key genes for early diagnosis and treatment of adamantinomatous craniopharyngioma

Subjects

Abstract

Adamantinomatous craniopharyngioma (ACP) is an aggressive brain tumor that occurs predominantly in the pediatric population. Conventional diagnosis method and standard therapy cannot treat ACPs effectively. In this paper, we aimed to identify key genes for ACP early diagnosis and treatment. Datasets GSE94349 and GSE68015 were obtained from Gene Expression Omnibus database. Consensus clustering was applied to discover the gene clusters in the expression data of GSE94349 and functional enrichment analysis was performed on gene set in each cluster. The protein–protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes, and hubs were selected. Support vector machine (SVM) model was built based on the signature genes identified from enrichment analysis and PPI network. Dataset GSE94349 was used for training and testing, and GSE68015 was used for validation. Besides, RT-qPCR analysis was performed to analyze the expression of signature genes in ACP samples compared with normal controls. Seven gene clusters were discovered in the differentially expressed genes identified from GSE94349 dataset. Enrichment analysis of each cluster identified 25 pathways that highly associated with ACP. PPI network was built and 46 hubs were determined. Twenty-five pathway-related genes that overlapped with the hubs in PPI network were used as signatures to establish the SVM diagnosis model for ACP. The prediction accuracy of SVM model for training, testing, and validation data were 94, 85, and 74%, respectively. The expression of CDH1, CCL2, ITGA2, COL8A1, COL6A2, and COL6A3 were significantly upregulated in ACP tumor samples, while CAMK2A, RIMS1, NEFL, SYT1, and STX1A were significantly downregulated, which were consistent with the differentially expressed gene analysis. SVM model is a promising classification tool for screening and early diagnosis of ACP. The ACP-related pathways and signature genes will advance our knowledge of ACP pathogenesis and benefit the therapy improvement.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

References

  1. Rodriguez FJ, Scheithauer BW, Tsunoda S, Kovacs K, Vidal S, Piepgras DG. The spectrum of malignancy in craniopharyngioma. Am J Surg Pathol. 2007;31:1020–8.

    Article  Google Scholar 

  2. Garrè ML, Cama A. Craniopharyngioma: modern concepts in pathogenesis and treatment. Curr Opin Pediatr. 2007;19:471–9.

    Article  Google Scholar 

  3. Garnett MR, Puget S, Grill J, Sainte-Rose C. Craniopharyngioma. Orphanet J Rare Dis. 2007;2:18.

    Article  Google Scholar 

  4. Hamid R, Sarkar S, Hossain M, Mazumder U, Akanda N, Parvin R. Clinical picture of craniopharyngioma in childhood. Mymensingh Med J. 2007;16:123–6.

    CAS  PubMed  Google Scholar 

  5. Özyurt J, Thiel CM, Lorenzen A, Gebhardt U, Calaminus G, Warmuth-Metz M, et al. Neuropsychological outcome in patients with childhood craniopharyngioma and hypothalamic involvement. J Pediatr. 2014;164:876–81. e874.

    Article  Google Scholar 

  6. Sughrue ME, Yang I, Kane AJ, Fang S, Clark AJ, Aranda D, et al. Endocrinologic, neurologic, and visual morbidity after treatment for craniopharyngioma. J Neurooncol. 2011;101:463–76.

    Article  Google Scholar 

  7. Flitsch J, Müller HL, Burkhardt T. Surgical strategies in childhood craniopharyngioma. Front Endocrinol. 2011;2:96.

    Article  Google Scholar 

  8. Gump JM, Donson AM, Birks DK, Amani VM, Rao KK, Griesinger AM, et al. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma. Acta Neuropathol Commun. 2015;3:30.

    Article  Google Scholar 

  9. Sterkenburg AS, Hoffmann A, Gebhardt U, Warmuth-Metz M, Daubenbüchel AM, Müller HL. Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro Oncol. 2015;17:1029–38.

    Article  Google Scholar 

  10. Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet. 2014;46:161–5.

    Article  CAS  Google Scholar 

  11. Larkin SJ, Preda V, Karavitaki N, Grossman A, Ansorge O. BRAF V600E mutations are characteristic for papillary craniopharyngioma and may coexist with CTNNB1-mutated adamantinomatous craniopharyngioma. Acta Neuropathol. 2014;127:927–9.

    Article  Google Scholar 

  12. Sekine S, Shibata T, Kokubu A, Morishita Y, Noguchi M, Nakanishi Y, et al. Craniopharyngiomas of adamantinomatous type harbor β-catenin gene mutations. Am J Pathol. 2002;161:1997–2001.

    Article  CAS  Google Scholar 

  13. Kato K, Nakatani Y, Kanno H, Inayama Y, Ijiri R, Nagahara N, et al. Possible linkage between specific histological structures and aberrant reactivation of the Wnt pathway in adamantinomatous craniopharyngioma. J Pathol. 2004;203:814–21.

    Article  CAS  Google Scholar 

  14. Buslei R, Nolde M, Hofmann B, Meissner S, Eyupoglu IY, Siebzehnrübl F, et al. Common mutations of β-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol. 2005;109:589–97.

    Article  CAS  Google Scholar 

  15. Oikonomou E, Barreto DC, Soares B, De Marco L, Buchfelder M, Adams EF. β-catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol. 2005;73:205–9.

    Article  CAS  Google Scholar 

  16. Malgulwar PB, Nambirajan A, Pathak P, Faruq M, Suri V, Sarkar C, et al. Study of β-catenin and BRAF alterations in adamantinomatous and papillary craniopharyngiomas: mutation analysis with immunohistochemical correlation in 54 cases. J Neurooncol. 2017;133(3):487–495.

    Article  CAS  Google Scholar 

  17. Zhang G.A modified SVM classifier based on RS in medical disease prediction. Computational Intelligence and Design, 2009. ISCID'09. Second International Symposium on IEEE; 2009.

  18. Maji S, Berg AC, Malik J. Efficient classification for additive kernel SVMs. IEEE Trans Pattern Anal Mach Intell. 2013;35:66–77.

    Article  Google Scholar 

  19. Thurston RC, Matthews KA, Hernandez J, De La Torre F. Improving the performance of physiologic hot flash measures with support vector machines. Psychophysiology. 2009;46:285–92.

    Article  Google Scholar 

  20. Zhang B, Liang X, Gao H, Ye L, Wang Y. Models of logistic regression analysis, support vector machine, and back-propagation neural network based on serum tumor markers in colorectal cancer diagnosis. Genet Mol Res. 2016;15,gmr.15028643.

  21. Yu W, Liu T, Valdez R, Gwinn M, Khoury MJ. Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med Inform Decis Mak. 2010;10:16.

    Article  Google Scholar 

  22. Cheadle C, Vawter MP, Freed WJ, Becker KG. Analysis of microarray data using Z score transformation. J Mol Diagn. 2003;5:73–81.

    Article  CAS  Google Scholar 

  23. Diboun I, Wernisch L, Orengo CA, Koltzenburg M. Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genom. 2006;7:252.

    Article  Google Scholar 

  24. Bishara AJ, Hittner JB. Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches. Psychol Methods. 2012;17:399.

    Article  Google Scholar 

  25. Gu J, Pitz M, Breitner S, Birmili W, von Klot S, Schneider A, et al. Selection of key ambient particulate variables for epidemiological studies—applying cluster and heatmap analyses as tools for data reduction. Sci Total Environ. 2012;435:541–50.

    Article  Google Scholar 

  26. Han Y, Lu W, Chen T. Cluster consensus in discrete-time networks of multiagents with inter-cluster nonidentical inputs. IEEE Trans Neural Netw Learn Syst. 2013;24:566–78.

    Article  Google Scholar 

  27. Xue B, Oldfield CJ, Dunker AK, Uversky VN. CDF it all: consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS Lett. 2009;583:1469–74.

    Article  CAS  Google Scholar 

  28. Lumijärvi J, Laurikkala J, Juhola M. A comparison of different heterogeneous proximity functions and Euclidean distance. Stud Health Technol Inform. 2004;107:1362–6.

    PubMed  Google Scholar 

  29. Kim TK. T test as a parametric statistic. Korean J Anesthesiol. 2015;68:540–6.

    Article  Google Scholar 

  30. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2010;39:D561–8.

    Article  Google Scholar 

  31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  Google Scholar 

  32. Tang Y, Li M, Wang J, Pan Y, Wu F-X. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2015;127:67–72.

    Article  CAS  Google Scholar 

  33. American Medical Informatics Association. Outlier detection with one-class SVMs: an application to melanoma prognosis. AMIA Annual Symposium Proceedings. American Medical Informatics Association;US, 2010.

  34. Durbeej M. Laminins. Cell Tissue Res. 2010;339:259.

    Article  CAS  Google Scholar 

  35. Tena-Suck ML, Salinas-Lara C, Arce-Arellano RI, Rembao-Bojórquez D, Morales-Espinosa D, Sotelo J, et al. Clinico-pathological and immunohistochemical characteristics associated to recurrence/regrowth of craniopharyngiomas. Clin Neurol Neurosurg. 2006;108:661–9.

    Article  Google Scholar 

  36. Colli LM, Saggioro F, Serafini LN, Camargo RC, Machado HR, Moreira AC, et al. Components of the canonical and non-canonical Wnt pathways are not mis-expressed in pituitary tumors. PLoS ONE. 2013;8:e62424.

    Article  CAS  Google Scholar 

  37. Yamauchi T. Neuronal Ca2 + /calmodulin-dependent protein kinase II—discovery, progress in a quarter of a century, and perspective: implication for learning and memory. Biol Pharm Bull. 2005;28:1342–54.

    Article  CAS  Google Scholar 

  38. Najdi R, Syed A, Arce L, Theisen H, Ting J-HT, Atcha F, et al. A Wnt-kinase network alters nuclear localization of TCF-1 in colon cancer. Oncogene. 2009;28:4133.

    Article  CAS  Google Scholar 

  39. Thomas DM, Ferguson GD, Herschman HR, Elferink LA. Functional and biochemical analysis of the C2 domains of synaptotagmin IV. Mol Biol Cell. 1999;10:2285–95.

    Article  CAS  Google Scholar 

  40. Ciani L, Marzo A, Boyle K, Stamatakou E, Lopes DM, Anane D, et al. Wnt signalling tunes neurotransmitter release by directly targeting Synaptotagmin-1. Nat Commun. 2015;6,8302.

  41. Pérez-Palma E, Andrade V, Caracci MO, Bustos BI, Villaman C, Medina MA, et al. Early transcriptional changes induced by Wnt/β-Catenin signaling in hippocampal neurons. Neural Plast. 2016;2016,4672841.

    Article  Google Scholar 

  42. Rampazzo E, Persano L, Pistollato F, Moro E, Frasson C, Porazzi P, et al. Wnt activation promotes neuronal differentiation of glioblastoma. Cell Death Dis. 2013;4:e500.

    Article  CAS  Google Scholar 

  43. Hölsken A, Sill M, Merkle J, Schweizer L, Buchfelder M, Flitsch J, et al. Adamantinomatous and papillary craniopharyngiomas are characterized by distinct epigenomic as well as mutational and transcriptomic profiles. Acta Neuropathol Commun. 2016;4:20.

    Article  Google Scholar 

  44. Song‐tao Q, Xiao‐rong Y, Jun P, Yong‐jian D, Jin L, Guang‐long H, et al. Does the calcification of adamantinomatous craniopharyngioma resemble the calcium deposition of osteogenesis/odontogenesis? Histopathology. 2014;64:336–47.

    Article  Google Scholar 

  45. Farrell WE, Azevedo MF, Batista DL, Smith A, Bourdeau I, Horvath A, et al. Unique gene expression profile associated with an early-onset multiple endocrine neoplasia (MEN1)-associated pituitary adenoma. J Clin Endocrinol Metab. 2011;96:E1905–14.

    Article  CAS  Google Scholar 

  46. Apps JR, Jani N, Carreno G, Gonzalez-Meljem JM, Tossell K, Stone TJ, et al. Expression analysis of adamantinomatous craniopharyngioma suggests two subtypes associated with CTNNB1 mutational frequency and highlights potential therapeutic targets. In: AACR; 2016.

  47. Apps J, Carreno G, Boult J, Gutteridge A, Danielson L, Jani N, et al. Molecular profiling and preclinical targeted therapeutic testing in adamantinomatous craniopharyngioma. Lancet. 2017;389:S22.

    Article  Google Scholar 

  48. Xu L, Warren M, Rose W, Gong W, Wang J. Human recombinant monocyte chemotactic protein and other CC chemokines bind and induce directional migration of dendritic cells in vitro. J Leukoc Biol. 1996;60:365–71.

    Article  CAS  Google Scholar 

  49. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med. 2013;19:739–46.

    Article  CAS  Google Scholar 

  50. Gong A-X, Zhang J-H, Li J, Wu J, Wang L, Miao D-S. Comparison of gene expression profiles between dental pulp and periodontal ligament tissues in humans. Int J Mol Med. 2017;40:647–60.

    Article  Google Scholar 

  51. Muller C, Adroos N, Lockhat Z, Slavik T, Kruger H. Toothy craniopharyngioma: a literature review and case report of craniopharyngioma with extensive odontogenic differentiation and tooth formation. Child Nerv Syst. 2011;27:323–6.

    Article  Google Scholar 

  52. Beaty NB, Ahn E. Adamantinomatous craniopharyngioma containing teeth. N Engl J Med. 2014;370:860–860.

    Article  Google Scholar 

  53. Plenz GA, Deng MC, Robenek H, Völker W. Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis. 2003;166:1–11.

    Article  CAS  Google Scholar 

  54. Bertini E, Pepe G. Collagen type VI and related disorders: Bethlem myopathy and Ullrich scleroatonic muscular dystrophy. Eur J Paediatr Neurol. 2002;6:193–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Hou, Z., Wang, C. et al. Gene expression profiles reveal key genes for early diagnosis and treatment of adamantinomatous craniopharyngioma. Cancer Gene Ther 25, 227–239 (2018). https://doi.org/10.1038/s41417-018-0015-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-018-0015-4

This article is cited by

Search

Quick links