Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comprehensive pharmacogenetic analysis of DPYD, UGT, CDA, and ABCB1 polymorphisms in pancreatic cancer patients receiving mFOLFIRINOX or gemcitabine plus nab-paclitaxel

Abstract

Modified FOLFIRINOX (mFOLFIRINOX) and gemcitabine + nab-paclitaxel (GemNab) regimens represent a standard treatment in advanced pancreatic cancer (aPC). DPYD and UGT1A1 variants are relevant predictors of fluoropyrimidine and irinotecan-associated adverse events (AEs). Furthermore, data about the associations between polymorphisms in ABCB and CDA genes and GemNab-related toxicities are still controversial. The present study analyzes the association between DPYD, UGT, ABCB1, CDA variants, and AEs in aPC patients (pts) treated with mFOLFIRINOX or GemNab. Blood samples collected from 104 aPC pts treated with mFOLFIRINOX and 63 with GemNab were tested for DPYD c.1679T>G, IVS14+1G>A, c.2194G>A, c.2846A>T, UGT1A1*28, CDA c.79A>C, and ABCB1 c.1236C>T, c.2677G>T/A, c.3435C>T by real-time PCR and automatic sequencing. In mFOLFIRINOX cohort, DPYD IVS14+1GA genotype was associated with G4 hematological AEs, while the UGT1A1*28 significantly correlated with the risk of thrombocytopenia (p = 0.006). In the GemNab cohort, a significant association between CDA c.79CC and high-grade nausea was observed (p = 0.002). Moreover, the presence of at least a mutant allele in ABCB1 increased the risk of overall hematological AEs (p = 0.01), both further strengthened by the presence of CDA c.79CC (p = 0.0002). DPYD IVS14+1A allele is confirmed to be associated with fluoropyrimidine life-threatening toxicities, and UGT1A1*28 is related with a higher risk of hematologic AEs following irinotecan treatment. CDA c.79C and ABCB1 c.1236T, c.2677T/A, and c.3435T mutant alleles are predictive biomarkers of GemNab-related AEs. All these variants should be considered in aPC pts candidate to mFOLFIRINOX or GemNab treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Involvement of UGT1A1*28 in clinical outcome of patients.

Similar content being viewed by others

Data availability

Data and results are available at the Unit of Clinical Pharmacology and Pharmacogenetics, University Hospital of Pisa.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  Google Scholar 

  2. Malvezzi M, Carioli G, Bertuccio P, Boffetta P, Levi F, La Vecchia C, et al. European cancer mortality predictions for the year 2019 with focus on breast cancer. Ann Oncol. 2019;30:781–7.

    CAS  PubMed  Google Scholar 

  3. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.

    CAS  PubMed  Google Scholar 

  4. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.

    Google Scholar 

  5. Conroy T, Hammel P, Hebbar M, Ben Abdelghani M, Wei AC, Raoul JL, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med. 2018;379:2395–406.

    CAS  PubMed  Google Scholar 

  6. Macarulla T, Pazo-Cid R, Guillen-Ponce C, Lopez R, Vera R, Reboredo M, et al. Phase I/II trial to evaluate the efficacy and safety of nanoparticle albumin-bound paclitaxel in combination with gemcitabine in patients with pancreatic cancer and an ECOG performance status of 2. J Clin Oncol. 2019;37:230–8.

    CAS  PubMed  Google Scholar 

  7. Macchini M, Chiaravalli M, Zanon S, Peretti U, Mazza E, Gianni L, et al. Chemotherapy in elderly patients with pancreatic cancer: efficacy, feasibility and future perspectives. Cancer Treat Rev. 2019;72:1–6.

    CAS  PubMed  Google Scholar 

  8. Iyer L, King CD, Whitington PF, Green MD, Roy SK, Tephly TR, et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Investig. 1998;101:847–54.

    CAS  PubMed  Google Scholar 

  9. Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet. 1989;16:215–37.

    CAS  PubMed  Google Scholar 

  10. Iyer L, Das S, Janisch L, Wen M, Ramirez J, Karrison T, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J. 2002;2:43–7.

    CAS  PubMed  Google Scholar 

  11. Liu X, Cheng D, Kuang Q, Liu G, Xu W. Association of UGT1A1*28 polymorphisms with irinotecan-induced toxicities in colorectal cancer: a meta-analysis in Caucasians. Pharmacogenomics J. 2014;14:120–9.

    CAS  PubMed  Google Scholar 

  12. Meulendijks D, Henricks LM, Sonke GS, Deenen MJ, Froehlich TK, Amstutz U, et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16:1639–50.

    CAS  PubMed  Google Scholar 

  13. Terrazzino S, Cargnin S, Del Re M, Danesi R, Canonico PL, Genazzani AA. DPYD IVS14+1G>A and 2846A>T genotyping for the prediction of severe fluoropyrimidine-related toxicity: a meta-analysis. Pharmacogenomics. 2013;14:1255–72.

    CAS  PubMed  Google Scholar 

  14. Del ReM, Cinieri S, Michelucci A, Salvadori S, Loupakis F, Schirripa M, et al. DPYD*6 plays an important role in fluoropyrimidine toxicity in addition to DPYD*2A and c.2846A>T: a comprehensive analysis in 1254 patients. Pharmacogenomics J. 2019;19:556–63.

    Google Scholar 

  15. Boige V, Vincent M, Alexandre P, Tejpar S, Landolfi S, Le Malicot K, et al. DPYD genotyping to predict adverse events following treatment with fluorouracil-based adjuvant chemotherapy in patients with stage III colon cancer: a secondary analysis of the PETACC-8 randomized clinical trial. JAMA Oncol. 2016;2:655–62.

    PubMed  Google Scholar 

  16. Ruzzo A, Graziano F, Galli F, Galli F, Rulli E, Lonardi S, et al. Dihydropyrimidine dehydrogenase pharmacogenetics for predicting fluoropyrimidine-related toxicity in the randomised, phase III adjuvant TOSCA trial in high-risk colon cancer patients. Br J Cancer. 2017;117:1269–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Iachetta F, Bonelli C, Romagnani A, Zamponi R, Tofani L, Farnetti E, et al. The clinical relevance of multiple DPYD polymorphisms on patients candidate for fluoropyrimidine based-chemotherapy. An Italian case-control study. Br J Cancer. 2019;120:834–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka M, Javle M, Dong X, Eng C, Abbruzzese JL, Li D. Gemcitabine metabolic and transporter gene polymorphisms are associated with drug toxicity and efficacy in patients with locally advanced pancreatic cancer. Cancer. 2010;116:5325–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Farrell JJ, Bae K, Wong J, Guha C, Dicker AP, Elsaleh H. Cytidine deaminase single-nucleotide polymorphism is predictive of toxicity from gemcitabine in patients with pancreatic cancer: RTOG 9704. Pharmacogenomics J. 2012;12:395–403.

    CAS  PubMed  Google Scholar 

  20. Ding X, Chen W, Fan H, Zhu B. Cytidine deaminase polymorphism predicts toxicity of gemcitabine-based chemotherapy. Gene. 2015;559:31–7.

    CAS  PubMed  Google Scholar 

  21. Kim HJ, Im SA, Keam B, Ham HS, Lee KH, Kim TY, et al. ABCB1 polymorphism as prognostic factor in breast cancer patients treated with docetaxel and doxorubicin neoadjuvant chemotherapy. Cancer Sci. 2015;106:86–93.

    CAS  PubMed  Google Scholar 

  22. Tanaka M, Okazaki T, Suzuki H, Abbruzzese JL, Li D. Association of multi-drug resistance gene polymorphisms with pancreatic cancer outcome. Cancer. 2011;117:744–51.

    CAS  PubMed  Google Scholar 

  23. Chang H, Rha SY, Jeung HC, Im CK, Noh SH, Kim JJ, et al. Association of the ABCB1 3435C>T polymorphism and treatment outcomes in advanced gastric cancer patients treated with paclitaxel-based chemotherapy. Oncol Rep. 2010;23:271–8.

    CAS  PubMed  Google Scholar 

  24. Bergmann TK, Brasch-Andersen C, Green H, Mirza MR, Skougaard K, Wihl J, et al. Impact of ABCB1 variants on neutrophil depression: a pharmacogenomic study of paclitaxel in 92 women with ovarian cancer. Basic Clin Pharmacol Toxicol. 2012;110:199–204.

    CAS  PubMed  Google Scholar 

  25. Sissung TM, Mross K, Steinberg SM, Behringer D, Figg WD, Sparreboom A, et al. Association of ABCB1 genotypes with paclitaxel-mediated peripheral neuropathy and neutropenia. Eur J Cancer. 2006;42:2893–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tulsyan S, Chaturvedi P, Singh AK, Agarwal G, Lal P, Agrawal S, et al. Assessment of clinical outcomes in breast cancer patients treated with taxanes: multi-analytical approach. Gene. 2014;543:69–75.

    CAS  PubMed  Google Scholar 

  27. Choi JR, Kim JO, Kang DR, Shin JY, Zhang XH, Oh JE, et al. Genetic variations of drug transporters can influence on drug response in patients treated with docetaxel chemotherapy. Cancer Res Treat. 2015;47:509–17.

    CAS  PubMed  Google Scholar 

  28. Tran A, Jullien V, Alexandre J, Rey E, Rabillon F, Girre V, et al. Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin Pharmacol Ther. 2006;79:570–80.

    CAS  PubMed  Google Scholar 

  29. Amrutkar M, Gladhaug IP. Pancreatic cancer chemoresistance to gemcitabine. Cancers. 2017;9:157–79.

  30. Gilbert JA, Salavaggione OE, Ji Y, Pelleymounter LL, Eckloff BW, Wieben ED, et al. Gemcitabine pharmacogenomics: cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics. Clin Cancer Res. 2006;12:1794–803.

    CAS  PubMed  Google Scholar 

  31. Okazaki T, Javle M, Tanaka M, Abbruzzese JL, Li D. Single nucleotide polymorphisms of gemcitabine metabolic genes and pancreatic cancer survival and drug toxicity. Clin Cancer Res. 2010;16:320–9.

    CAS  PubMed  Google Scholar 

  32. Vivaldi C, Caparello C, Musettini G, Pasquini G, Catanese S, Fornaro L, et al. First-line treatment with FOLFOXIRI for advanced pancreatic cancer in clinical practice: patients’ outcome and analysis of prognostic factors. Int J Cancer. 2016;139:938–45.

    CAS  PubMed  Google Scholar 

  33. Shulman K, Cohen I, Barnett-Griness O, Kuten A, Gruber SB, Lejbkowicz F, et al. Clinical implications of UGT1A1*28 genotype testing in colorectal cancer patients. Cancer. 2011;117:3156–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shirasu H, Todaka A, Omae K, Fujii H, Mizuno N, Ozaka M, et al. Impact of UGT1A1 genetic polymorphism on toxicity in unresectable pancreatic cancer patients undergoing FOLFIRINOX. Cancer Sci. 2019;110:707–16.

    CAS  PubMed  Google Scholar 

  35. Mukherji D, Massih SA, Tfayli A, Kanso M, Faraj W. Three different polymorphisms of the DPYD gene associated with severe toxicity following administration of 5-FU: a case report. J Med Case Rep. 2019;13:76.

    PubMed  PubMed Central  Google Scholar 

  36. Velez-Velez LM, Hughes CL, Kasi PM. Clinical value of pharmacogenomic testing in a patient receiving FOLFIRINOX for pancreatic adenocarcinoma. Front Pharmacol. 2018;9:1309.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schwab M, Zanger UM, Marx C, Schaeffeler E, Klein K, Dippon J, et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J Clin Oncol. 2008;26:2131–8.

    CAS  PubMed  Google Scholar 

  38. Toffoli G, Giodini L, Buonadonna A, Berretta M, De Paoli A, Scalone S, et al. Clinical validity of a DPYD-based pharmacogenetic test to predict severe toxicity to fluoropyrimidines. Int J Cancer. 2015;137:2971–80.

    CAS  PubMed  Google Scholar 

  39. Del ReM, Michelucci A, Di Leo A, Cantore M, Bordonaro R, Simi P, et al. Discovery of novel mutations in the dihydropyrimidine dehydrogenase gene associated with toxicity of fluoropyrimidines and viewpoint on preemptive pharmacogenetic screening in patients. EPMA J. 2015;6:17.

    Google Scholar 

  40. Deenen MJ, Tol J, Burylo AM, Doodeman VD, de Boer A, Vincent A, et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin Cancer Res. 2011;17:3455–68.

    CAS  PubMed  Google Scholar 

  41. Liu CY, Chen PM, Chiou TJ, Liu JH, Lin JK, Lin TC, et al. UGT1A1*28 polymorphism predicts irinotecan-induced severe toxicities without affecting treatment outcome and survival in patients with metastatic colorectal carcinoma. Cancer. 2008;112:1932–40.

    CAS  PubMed  Google Scholar 

  42. Pang L, Word B, Xu J, Wang H, Hammons G, Huang SM, et al. ATP-binding cassette genes genotype and expression: a potential association with pancreatic cancer development and chemoresistance? Gastroenterol Res Pract. 2014;2014:414931.

    PubMed  PubMed Central  Google Scholar 

  43. Xu J, Zhou Y, Zhang J, Chen Y, Zhuang R, Liu T, et al. High incidence of severe neutropenia after gemcitabine-based chemotherapy in Chinese cancer patients with CDA 79A>C mutation. Clin Chim Acta. 2012;413:1284–7.

    CAS  PubMed  Google Scholar 

  44. Chang H, Rha SY, Jeung HC, Im CK, Ahn JB, Kwon WS, et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monotherapy in metastatic breast cancer patients. Ann Oncol. 2009;20:272–7.

    CAS  PubMed  Google Scholar 

  45. Serdjebi C, Gagniere J, Desrame J, Fein F, Guimbaud R, Francois E, et al. FFCD-1004 clinical trial: impact of cytidine deaminase activity on clinical outcome in gemcitabine-monotherapy treated patients. PLoS ONE. 2015;10:e0135907.

    PubMed  PubMed Central  Google Scholar 

  46. Li H, Wang X, Wang X. The impact of CDA A79C gene polymorphisms on the response and hematologic toxicity in gemcitabine-treated patients: a meta-analysis. Int J Biol Markers. 2014;29:e224–32.

    PubMed  Google Scholar 

  47. Kimchi-Sarfaty C, Marple AH, Shinar S, Kimchi AM, Scavo D, Roma MI, et al. Ethnicity-related polymorphisms and haplotypes in the human ABCB1 gene. Pharmacogenomics. 2007;8:29–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sugiyama E, Lee SJ, Lee SS, Kim WY, Kim SR, Tohkin M, et al. Ethnic differences of two non-synonymous single nucleotide polymorphisms in CDA gene. Drug Metab Pharmacokinet. 2009;24:553–6.

    CAS  PubMed  Google Scholar 

  49. Ueno H, Kaniwa N, Okusaka T, Ikeda M, Morizane C, Kondo S, et al. Homozygous CDA*3 is a major cause of life-threatening toxicities in gemcitabine-treated Japanese cancer patients. Br J Cancer. 2009;100:870–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yonemori K, Ueno H, Okusaka T, Yamamoto N, Ikeda M, Saijo N, et al. Severe drug toxicity associated with a single-nucleotide polymorphism of the cytidine deaminase gene in a Japanese cancer patient treated with gemcitabine plus cisplatin. Clin Cancer Res. 2005;11:2620–4.

    CAS  PubMed  Google Scholar 

  51. Ciccolini J, Evrard A, Lacarelle BA. CDD polymorphism as predictor of capecitabine-induced hand-foot syndrome–letter. Clin Cancer Res. 2012;18:317.

    CAS  PubMed  Google Scholar 

  52. Swen JJ, Nijenhuis M, de Boer A, Grandia L, Maitland-van der Zee AH, Mulder H, et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther. 2011;89:662–73.

    CAS  PubMed  Google Scholar 

  53. Amstutz U, Henricks LM, Offer SM, Barbarino J, Schellens JHM, Swen JJ, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103:210–6.

    CAS  PubMed  Google Scholar 

  54. EMA/367286/2020. EMA recommendations on DPD testing prior to treatment with fluorouracil, capecitabine, tegafur and flucytosine. 2020. https://www.ema.europa.eu/en/documents/referral/fluorouracil-fluorouracil-related-substances-article-31-referral-ema-recommendations-dpd-testing_en.pdf.

  55. AIOM-SIF Working group. Recommendations 2019 for pharmacogenetic analyses. 2019. https://www.aiom.it/wp-content/uploads/2019/10/2019_Racc-analisi-farmacogenetiche_v26.3.2020.pdf.

  56. Liu XH, Lu J, Duan W, Dai ZM, Wang M, Lin S, et al. Predictive value of UGT1A1*28 polymorphism in irinotecan-based chemotherapy. J Cancer. 2017;8:691–703.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant of the University of Pisa (Italy) to RD.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: MDR, CV. Development of methodology: MDR, SC, ER, and EA. Clinical protocols/amendments: MDR, RD. Acquisition of data: MDR, SC, ER, EA, and CV. Analysis and interpretation of data: MDR, CV, SC, FC. RM, and RD. Writing, review, and/or revision of the paper: all authors. Administrative, technical, or material support: MDR, SC, ER, and RD. Study supervision: MDR, RD.

Corresponding author

Correspondence to Romano Danesi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

The study was approved by the Ethics Committee of Pisa University Hospital. Written informed consent was obtained from each patient included, and this study was performed in accordance with the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivaldi, C., Crucitta, S., Catanese, S. et al. Comprehensive pharmacogenetic analysis of DPYD, UGT, CDA, and ABCB1 polymorphisms in pancreatic cancer patients receiving mFOLFIRINOX or gemcitabine plus nab-paclitaxel. Pharmacogenomics J 21, 233–242 (2021). https://doi.org/10.1038/s41397-020-00203-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-020-00203-7

This article is cited by

Search

Quick links