Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Precision dosing of warfarin: open questions and strategies

Abstract

Warfarin has a very narrow therapeutic window and obvious interindividual variability in its effects, with many factors contributing to the body’s response. Algorithms incorporating multiple genetic, environment and clinical factors have been established to select a precision dose for each patient. A number of randomized controlled trials (RCTs) were conducted to explore whether patients could benefit from these algorithms; however, the results were inconsistent. Some questions remain to be resolved. Recently, new genetic and non-genetic factors have been discovered to contribute to variability in optimal warfarin doses. The results of further RCTs have been unveiled, and guidelines for pharmacogenetically guided warfarin dosing have been updated. Based on these most recent advancements, we summarize some open questions in this field and try to propose possible strategies to resolve them.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pirmohamed M, Kamali F, Daly AK, Wadelius M. Oral anticoagulation: a critique of recent advances and controversies. Trends Pharmacol Sci. 2015;36:153–63.

    Article  CAS  PubMed  Google Scholar 

  2. Johnson JA, Cavallari LH. Warfarin pharmacogenetics. Trends Cardiovasc Med. 2015;25:33–41.

    Article  CAS  PubMed  Google Scholar 

  3. Cavallari LH, Nutescu EA. Warfarin pharmacogenetics: to genotype or not to genotype, that is the question. Clin Pharmacol Ther. 2014;96:224.

    Article  CAS  PubMed  Google Scholar 

  4. Niinuma Y, Saito T, Takahashi M, Tsukada C, Ito M, Hirasawa N, et al. Functional characterization of 32 CYP2C9 allelic variants. Pharm J. 2014;14:107–14.

    CAS  Google Scholar 

  5. Hiratsuka M. In vitro assessment of the allelic variants of cytochrome P450. Drug Metab Pharmacokinet. 2012;27:68–84.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin Pharmacol Ther. 2017;102:397–404.

    Article  CAS  PubMed  Google Scholar 

  7. Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Human Mol Genet. 2005;14:1745–51.

    Article  CAS  Google Scholar 

  8. McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE. CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol. 2009;75:1337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, et al. CYP4F2 genetic variant alters required warfarin dose. Blood. 2008;111:4106–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90:625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 2009;5:e1000433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Cha PC, Mushiroda T, Takahashi A, Kubo M, Minami S, Kamatani N, et al. Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese. Human Mol Genet. 2010;19:4735–44.

    Article  CAS  Google Scholar 

  13. Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI, et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood. 2008;112:1022–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parra EJ, Botton MR, Perini JA, Krithika S, Bourgeois S, Johnson TA, et al. Genome-wide association study of warfarin maintenance dose in a Brazilian sample. Pharmacogenomics. 2015;16:1253–63.

    Article  CAS  PubMed  Google Scholar 

  15. Perera MA, Cavallari LH, Limdi NA, Gamazon ER, Konkashbaev A, Daneshjou R, et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet. 2013;382:790–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo Z, Li X, Zhu M, Tang J, Li Z, Zhou X, et al. Identification of novel variants associated with warfarin stable dosage by use of a two-stage extreme phenotype strategy. J Thromb Haemost: JTH. 2017;15:28–37.

    Article  CAS  PubMed  Google Scholar 

  17. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature. 2004;427:537–41.

    Article  CAS  PubMed  Google Scholar 

  18. Liu N, Irvin MR, Zhi D, Patki A, Beasley TM, Nickerson DA, et al. Influence of common and rare genetic variation on warfarin dose among African-Americans and European-Americans using the exome array. Pharmacogenomics. 2017;18:1059–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eriksson N, Wallentin L, Berglund L, Axelsson T, Connolly S, Eikelboom J, et al. Genetic determinants of warfarin maintenance dose and time in therapeutic treatment range: a RE-LY genomics substudy. Pharmacogenomics. 2016;17:1425–39.

    Article  CAS  PubMed  Google Scholar 

  20. Falcone GJ, Radmanesh F, Brouwers HB, Battey TW, Devan WJ, Valant V, et al. APOE epsilon variants increase risk of warfarin-related intracerebral hemorrhage. Neurology. 2014;83:1139–46.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ivanov M, Barragan I, Ingelman-Sundberg M. Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci. 2014;35:384–96.

    Article  CAS  PubMed  Google Scholar 

  22. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2017;359:91–7.

    Article  PubMed  CAS  Google Scholar 

  23. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2017;359:97–103.

  24. Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357:1156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013;493:45–50.

    Article  PubMed  CAS  Google Scholar 

  26. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550:61–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009;61:541–58.

    Article  CAS  PubMed  Google Scholar 

  28. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555:623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Majchrzak-Celinska A, Baer-Dubowska W. Pharmacoepigenetics: an element of personalized therapy? Expert Opin Drug Metab Toxicol. 2017;13:387–98.

    Article  CAS  PubMed  Google Scholar 

  30. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med. 2005;352:997–1003.

    Article  CAS  PubMed  Google Scholar 

  31. Rieger JK, Reutter S, Hofmann U, Schwab M, Zanger UM. Inflammation-associated microRNA-130b down-regulates cytochrome P450 activities and directly targets CYP2C9. Drug Metab Dispos: Biol fate Chem. 2015;43:884–8.

    Article  CAS  Google Scholar 

  32. Yu D, Green B, Marrone A, Guo Y, Kadlubar S, Lin D, et al. Suppression of CYP2C9 by microRNA hsa-miR-128-3p in human liver cells and association with hepatocellular carcinoma. Sci Rep. 2015;5:8534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perez-Andreu V, Teruel R, Corral J, Roldan V, Garcia-Barbera N, Salloum-Asfar S, et al. miR-133a regulates vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), a key protein in the vitamin K cycle. Mol Med. 2013;18:1466–72.

    Article  PubMed  CAS  Google Scholar 

  34. Shomron N. MicroRNAs and pharmacogenomics. Pharmacogenomics. 2010;11:629–32.

    Article  CAS  PubMed  Google Scholar 

  35. Ciccacci C, Rufini S, Politi C, Novelli G, Forte V, Borgiani P. Could MicroRNA polymorphisms influence warfarin dosing? A pharmacogenetics study on mir133 genes. Thromb Res. 2015;136:367–70.

    Article  CAS  PubMed  Google Scholar 

  36. Tang XY, Zhang J, Peng J, Tan SL, Zhang W, Song GB, et al. The association between GGCX, miR-133 genetic polymorphisms and warfarin stable dosage in Han Chinese patients with mechanical heart valve replacement. J Clin Pharm Ther. 2017;42:438–45.

    Article  CAS  PubMed  Google Scholar 

  37. Hillman MA, Wilke RA, Caldwell MD, Berg RL, Glurich I, Burmester JK. Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype. Pharmacogenetics. 2004;14:539–47.

    Article  CAS  PubMed  Google Scholar 

  38. Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, et al. Genetic determinants of response to warfarin during initial anticoagulation. New Engl J Med. 2008;358:999–1008.

    Article  CAS  PubMed  Google Scholar 

  39. Voora D, Eby C, Linder MW, Milligan PE, Bukaveckas BL, McLeod HL, et al. Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype. Thromb Haemost. 2005;93:700–5.

    Article  CAS  PubMed  Google Scholar 

  40. Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, Mansfield JW, et al. A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation. 2012;125:1997–2005.

    Article  CAS  PubMed  Google Scholar 

  41. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. New Engl J Med. 2013;369:2294–303.

    Article  CAS  PubMed  Google Scholar 

  42. Sasaki T, Tabuchi H, Higuchi S, Ieiri I. Warfarin-dosing algorithm based on a population pharmacokinetic/pharmacodynamic model combined with Bayesian forecasting. Pharmacogenomics. 2009;10:1257–66.

    Article  CAS  PubMed  Google Scholar 

  43. Cosgun E, Limdi NA, Duarte CW. High-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans. Bioinformatics. 2011;27:1384–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu YH, Wu F, Lo CL, Tai CT. Predicting warfarin dosage from clinical data: a supervised learning approach. Artif Intell Med. 2012;56:27–34.

    Article  PubMed  Google Scholar 

  45. Isma’eel HA, Sakr GE, Habib RH, Almedawar MM, Zgheib NK, Elhajj IH. Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method. Eur J Clin Pharmacol. 2014;70:265–73.

    Article  PubMed  CAS  Google Scholar 

  46. Pavani A, Naushad SM, Kumar RM, Srinath M, Malempati AR, Kutala VK. Artificial neural network-based pharmacogenomic algorithm for warfarin dose optimization. Pharmacogenomics. 2016;17:121–31.

    Article  CAS  PubMed  Google Scholar 

  47. Consortium TIWP. Estimation of the warfarin dose with clinical and pharmacogenetic data. New Engl J Med. 2009;360:753–64.

    Article  Google Scholar 

  48. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84:326–31.

    Article  CAS  PubMed  Google Scholar 

  49. Millican EA, Lenzini PA, Milligan PE, Grosso L, Eby C, Deych E, et al. Genetic-based dosing in orthopedic patients beginning warfarin therapy. Blood. 2007;110:1511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lenzini P, Wadelius M, Kimmel S, Anderson JL, Jorgensen AL, Pirmohamed M, et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clin Pharmacol & Ther. 2010;87:572–8.

    Article  CAS  Google Scholar 

  51. Yan H, Yin JY, Zhang W, Li X. Possible strategies to make warfarin dosing algorithm prediction more accurately in patients with extreme dose. Clin Pharmacol Ther. 2018;103:184.

    Article  PubMed  Google Scholar 

  52. Li X, Liu R, Luo ZY, Yan H, Huang WH, Yin JY, et al. Comparison of the predictive abilities of pharmacogenetics-based warfarin dosing algorithms using seven mathematical models in Chinese patients. Pharmacogenomics. 2015;16:583–90.

    Article  CAS  PubMed  Google Scholar 

  53. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. New Engl J Med. 2013;369:2283–93.

    Article  CAS  PubMed  Google Scholar 

  54. Gage BF, Bass AR, Lin H, Woller SC, Stevens SM, Al-Hammadi N, et al. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: the GIFT randomized clinical trial. J Am Med Assoc. 2017;318:1115–24.

    Article  CAS  Google Scholar 

  55. Liu R, Li X, Zhang W, Zhou HH. Comparison of nine statistical model based warfarin pharmacogenetic dosing algorithms using the racially diverse international warfarin pharmacogenetic consortium cohort database. PloS ONE. 2015;10:11.

    Google Scholar 

  56. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. New Engl J Med. 2013;369:2283–93.

    Article  CAS  PubMed  Google Scholar 

  57. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. New Engl J Med. 2013;369:2294–303.

    Article  CAS  PubMed  Google Scholar 

  58. Verhoef TI, Ragia G, de Boer A, Barallon R, Kolovou G, Kolovou V, et al. A randomized trial of genotype-guided dosing of acenocoumarol and phenprocoumon. New Engl J Med. 2013;369:2304–12.

    Article  CAS  PubMed  Google Scholar 

  59. Shi C, Yan W, Wang G, Wang F, Li Q, Lin N. Pharmacogenetics-based versus conventional dosing of warfarin: a meta-analysis of randomized controlled trials. PloS ONE. 2015;10:e0144511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Tang Q, Zou H, Guo C, Liu Z. Outcomes of pharmacogenetics-guided dosing of warfarin: a systematic review and meta-analysis. Int J Cardiol. 2014;175:587–91.

    Article  PubMed  Google Scholar 

  61. Xu H, Xie X, Wang B, Chen Y, Meng T, Ma S, et al. Meta-analysis of efficacy and safety of genotype-guided pharmacogenetic dosing of warfarin. Int J Cardiol. 2014;177:654–7.

    Article  PubMed  Google Scholar 

  62. Stergiopoulos K, Brown DL. Genotype-guided vs clinical dosing of warfarin and its analogues: meta-analysis of randomized clinical trials. JAMA Intern Med. 2014;174:1330–8.

    Article  PubMed  CAS  Google Scholar 

  63. Franchini M, Mengoli C, Cruciani M, Bonfanti C, Mannucci PM. Effects on bleeding complications of pharmacogenetic testing for initial dosing of vitamin K antagonists: a systematic review and meta-analysis. J Thromb Haemost: JTH. 2014;12:1480–7.

    Article  CAS  PubMed  Google Scholar 

  64. Li X, Yang J, Wang X, Xu Q, Zhang Y, Yin T. Clinical benefits of pharmacogenetic algorithm-based warfarin dosing: meta-analysis of randomized controlled trials. Thromb Res. 2015;135:621–9.

    Article  CAS  PubMed  Google Scholar 

  65. Dahal K, Sharma SP, Fung E, Lee J, Moore JH, Unterborn JN, et al. Meta-analysis of randomized controlled trials of genotype-guided vs standard dosing of warfarin. Chest. 2015;148:701–10.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. New Engl J Med. 2009;360:753–64.

    Article  CAS  PubMed  Google Scholar 

  67. Cen HJ, Zeng WT, Leng XY, Huang M, Chen X, Li JL, et al. CYP4F2rs2108622: a minor significant genetic factor of warfarin dose in Han Chinese patients with mechanical heart valve replacement. Br J Clin Pharmacol. 2010;70:234–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Borgiani P, Ciccacci C, Forte V, Sirianni E, Novelli L, Bramanti P, et al. CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the Italian population. Pharmacogenomics. 2009;10:261–6.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang JE, Klein K, Jorgensen AL, Francis B, Alfirevic A, Bourgeois S, et al. Effect of genetic variability in the CYP4F2, CYP4F11, and CYP4F12 genes on liver mRNA levels and warfarin response. Front Pharmacol. 2017;8:323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Do EJ, Lenzini P, Eby CS, Bass AR, McMillin GA, Stevens SM, et al. Genetics informatics trial (GIFT) of warfarin to prevent deep vein thrombosis (DVT): rationale and study design. Pharm J. 2012;12:417–24.

    CAS  Google Scholar 

  71. Lee A, Crowther M. Practical issues with vitamin K antagonists: elevated INRs, low time-in-therapeutic range, and warfarin failure. J Thromb Thrombolysis. 2011;31:249–58.

    Article  CAS  PubMed  Google Scholar 

  72. Connolly SJ, Pogue J, Eikelboom J, Flaker G, Commerford P, Franzosi MG, et al. Benefit of oral anticoagulant over antiplatelet therapy in atrial fibrillation depends on the quality of international normalized ratio control achieved by centers and countries as measured by time in therapeutic range. Circulation. 2008;118:2029–37.

    Article  CAS  PubMed  Google Scholar 

  73. Rose AJ, Hylek EM, Ozonoff A, Ash AS, Reisman JI, Berlowitz DR. Risk-adjusted percent time in therapeutic range as a quality indicator for outpatient oral anticoagulation: results of the Veterans Affairs Study to Improve Anticoagulation (VARIA). Circ Cardiovasc Qual Outcomes. 2011;4:22–9.

    Article  PubMed  Google Scholar 

  74. Bader LA, Elewa H. The impact of genetic and non-genetic factors on warfarin dose prediction in MENA region: a systematic review. PloS ONE. 2016;11:e0168732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Danese E, Montagnana M, Johnson JA, Rettie AE, Zambon CF, Lubitz SA, et al. Impact of the CYP4F2 p.V433M polymorphism on coumarin dose requirement: systematic review and meta-analysis. Clin Pharmacol Ther. 2012;92:746–56.

    Article  CAS  PubMed  Google Scholar 

  76. Hernandez W, Gamazon ER, Aquino-Michaels K, Patel S, O’Brien TJ, Harralson AF, et al. Ethnicity-specific pharmacogenetics: the case of warfarin in African Americans. Pharm J. 2014;14:223–8.

    CAS  Google Scholar 

  77. Wan Y, Heneghan C, Perera R, Roberts N, Hollowell J, Glasziou P, et al. Anticoagulation control and prediction of adverse events in patients with atrial fibrillation: a systematic review. Circ Cardiovasc Qual Outcomes. 2008;1:84–91.

    Article  PubMed  Google Scholar 

  78. Liu J, Jiang HH, Wu DK, Zhou YX, Ye HM, Li X, et al. Effect of gene polymorphims on the warfarin treatment at initial stage. Pharm J. 2017;17:47–52.

    CAS  Google Scholar 

  79. Wen MS, Chang KC, Lee TH, Chen YF, Hung KC, Chang YJ, et al. Pharmacogenetic dosing of warfarin in the Han-Chinese population: a randomized trial. Pharmacogenomics. 2017;18:245–53.

    Article  CAS  PubMed  Google Scholar 

  80. Wang M, Lang X, Cui S, Fei K, Zou L, Cao J, et al. Clinical application of pharmacogenetic-based warfarin-dosing algorithm in patients of Han nationality after rheumatic valve replacement: a randomized and controlled trial. Int J Med Sci. 2012;9:472–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang SW, Chen HS, Wang XQ, Huang L, Xu DL, Hu XJ, et al. Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients. Pharm Genom. 2009;19:226–34.

    Article  CAS  Google Scholar 

  82. Syn NL, Wong AL, Lee SC, Teoh HL, Yip JWL, Seet RC, et al. Genotype-guided versus traditional clinical dosing of warfarin in patients of Asian ancestry: a randomized controlled trial. BMC Med. 2018;16:104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Xu Z, Zhang SY, Huang M, Hu R, Li JL, Cen HJ, et al. Genotype-guided warfarin dosing in patients with mechanical valves: a randomized controlled trial. Annals Thoracic Surgery. 2018;106:1774–81.

    Article  PubMed  Google Scholar 

  84. Pengo V, Zambon CF, Fogar P, Padoan A, Nante G, Pelloso M, et al. A randomized trial of pharmacogenetic warfarin dosing in naive patients with non-valvular atrial fibrillation. PloS ONE. 2015;10:e0145318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92:414–7.

    Article  CAS  PubMed  Google Scholar 

  86. Holbrook A, Schulman S, Witt DM, Vandvik PO, Fish J, Kovacs MJ, et al. Evidence-based management of anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e152S–84S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shaw K, Amstutz U, Kim RB, Lesko LJ, Turgeon J, Michaud V, et al. Clinical practice recommendations on genetic testing of CYP2C9 and VKORC1 variants in warfarin therapy. Ther Drug Monit. 2015;37:428–36.

    Article  CAS  PubMed  Google Scholar 

  88. Plumpton CO, Roberts D, Pirmohamed M, Hughes DA. A systematic review of economic evaluations of pharmacogenetic testing for prevention of adverse drug reactions. PharmacoEconomics. 2016;34:771–93.

    Article  PubMed  Google Scholar 

  89. You JH. Pharmacoeconomic evaluation of warfarin pharmacogenomics. Expert Opin Pharmacother. 2011;12:435–41.

    Article  CAS  PubMed  Google Scholar 

  90. Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, et al. DNA sequencing at 40: past, present and future. Nature. 2017;550:345–53.

    Article  CAS  PubMed  Google Scholar 

  91. Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng. 2007;9:289–320.

    Article  CAS  PubMed  Google Scholar 

  92. Kim DJ, Kim HS, Oh M, Kim EY, Shin JG. Cost effectiveness of genotype-guided warfarin dosing in patients with mechanical heart valve replacement under the fee-for-service system. Appl Health Econ Health Policy. 2017;15:657–67.

    Article  PubMed  Google Scholar 

  93. Verhoef TI, Redekop WK, Langenskiold S, Kamali F, Wadelius M, Burnside G, et al. Cost-effectiveness of pharmacogenetic-guided dosing of warfarin in the United Kingdom and Sweden. Pharm J. 2016;16:478–84.

    CAS  Google Scholar 

  94. You JH. Universal versus genotype-guided use of direct oral anticoagulants in atrial fibrillation patients: a decision analysis. Pharmacogenomics. 2015;16:1089–100.

    Article  CAS  PubMed  Google Scholar 

  95. Arwood MJ, Deng J, Drozda K, Pugach O, Nutescu EA, Schmidt S, et al. Anticoagulation endpoints with clinical implementation of warfarin pharmacogenetic dosing in a real-world setting: a proposal for a new pharmacogenetic dosing approach. Clin Pharmacol Ther. 2017;101:675–83.

    Article  CAS  PubMed  Google Scholar 

  96. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, et al. A randomized trial of genotype-guided dosing of warfarin. New Engl J Med. 2013;369:2294–303.

    Article  CAS  PubMed  Google Scholar 

  97. Shaw K, Amstutz U, Kim RB, Lesko LJ, Turgeon J, Michaud V, et al. Clinical practice recommendations on genetic testing of CYP2C9 and VKORC1 variants in warfarin therapy. Ther Drug Monit. 2015;37:428–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81773823, 81573463, 81403017) and the National Science and Technology Major Project (2017ZX09304014, 2016YFC0905000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Ye Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, D., Wu, JC. et al. Precision dosing of warfarin: open questions and strategies. Pharmacogenomics J 19, 219–229 (2019). https://doi.org/10.1038/s41397-019-0083-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41397-019-0083-3

This article is cited by

Search

Quick links