Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SLC35F2–SYVN1–TRIM59 axis critically regulates ferroptosis of pancreatic cancer cells by inhibiting endogenous p53

Abstract

Pancreatic cancer cells undergo intricate metabolic reprogramming to sustain their survival and proliferation. p53 exhibits a dual role in tumor cell ferroptosis. However, the precise role and mechanisms underlying wild-type p53 activation in promoting ferroptosis in pancreatic cancer cells remain obscure. In this study, we applied bioinformatics tools and performed an analysis of clinical tissue sample databases and observed a significantly upregulated expression of solute carrier family 35 member F2 (SLC35F2) in pancreatic cancer tissues. Our clinical investigations indicated that elevated SLC35F expression was related to adverse survival outcomes. Through multi-omics analyses, we discerned that SLC35F2 influences the transcriptome and inhibits ferroptosis in pancreatic cancer cells. Moreover, our findings reveal the pivotal involvement of p53 in mediating SLC35F2-mediated ferroptosis, both in vitro and in vivo. SLC35F2 inhibits ferroptosis by facilitating TRIM59-mediated p53 degradation. Further mechanistic investigations demonstrated that SLC35F2 competitively interacts with the E3 ubiquitin ligase SYVN1 of TRIM59, thereby stabilizing TRIM59 expression and consequentially promoting p53 degradation. Utilizing protein 3D structure analysis and drug screening, we identified irinotecan hydrochloride and lapatinib ditosylate as compounds targeting SLC35F2, augmenting the antitumor effect of imidazole ketone erastin (IKE) in a wild-type p53 patient-derived xenograft (PDX) model. However, in the p53 mutant PDX model, irinotecan hydrochloride and lapatinib ditosylate did not alter the sensitivity of the tumor xenograft model to IKE-triggered ferroptosis. In summary, our work establishes a novel mechanism wherein the SLC35F2–SYVN1–TRIM59 axis critically regulates ferroptosis of pancreatic cancer cells by inhibiting endogenous p53. Thus, SLC35F2 emerges as a promising therapeutic target for treating pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SLC35F2 expression is upregulated, correlating with the progression and prognosis of patients with pancreatic adenocarcinoma (PAAD).
Fig. 2: SLC35F2 exerts transcriptomic effect on ferroptosis in pancreatic cancer (PC) cells.
Fig. 3: SLC35F2 regulates the p53 signaling pathway to inhibit ferroptosis in pancreatic cancer (PC) cells.
Fig. 4: p53 is essential for SLC35F2-mediated ferroptosis in pancreatic cancer (PC) cells.
Fig. 5: SLC35F2 promotes p53 degradation mediated by the ubiquitin proteasome.
Fig. 6: SLC35F2 inhibits ferroptosis in pancreatic cancer cells depending on TRIM59-mediated p53 degradation.
Fig. 7: SLC35F2 competitively binds to SYVN1 to increase TRIM59 expression.
Fig. 8: Targeting SLC35F2 enhances the anticancer activity of imidazole ketone erastin (IKE).

Similar content being viewed by others

Data availability

All data in our study are available from the corresponding author upon reasonable request.

References

  1. Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA. 2021;326:851–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu H, Li T, Du Y, Li M. Pancreatic cancer: challenges and opportunities. BMC Med. 2018;16:214.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Shin S, Solorzano J, Liauzun M, Pyronnet S, Bousquet C, Martineau Y. Translational alterations in pancreatic cancer: a central role for the integrated stress response. NAR Cancer. 2022;4:zcac031.

    PubMed  PubMed Central  Google Scholar 

  4. Yang J, Jin L, Kim HS, Tian F, Yi Z, Bedi K, et al. KDM6A loss recruits tumor-associated neutrophils and promotes neutrophil extracellular trap formation in pancreatic cancer. Cancer Res. 2022;82:4247–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pirhonen J, Szkalisity A, Hagstrom J, Kim Y, Migh E, Kovacs M, et al. Lipid metabolic reprogramming extends beyond histologic tumor demarcations in operable human pancreatic cancer. Cancer Res. 2022;82:3932–49.

    CAS  PubMed  Google Scholar 

  6. Liu J, Wang Y, Mu C, Li M, Li K, Li S, et al. Pancreatic tumor eradication via selective Pin1 inhibition in cancer-associated fibroblasts and T lymphocytes engagement. Nat Commun. 2022;13:4308.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen Y, Yang S, Tavormina J, Tampe D, Zeisberg M, Wang H, et al. Oncogenic collagen I homotrimers from cancer cells bind to alpha3beta1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell. 2022;40:818–34.e819.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Qin C, Yang G, Yang J, Ren B, Wang H, Chen G, et al. Metabolism of pancreatic cancer: paving the way to better anticancer strategies. Mol Cancer. 2020;19:50.

    PubMed  PubMed Central  Google Scholar 

  9. Li D, Wang Y, Dong C, Chen T, Dong A, Ren J, et al. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene. 2023;42:83–98.

    CAS  PubMed  Google Scholar 

  10. Wang CK, Chen TJ, Tan GYT, Chang FP, Sridharan S, Yu CA, et al. MEX3A mediates p53 degradation to suppress ferroptosis and facilitate ovarian cancer tumorigenesis. Cancer Res. 2023;83:251–263.

    CAS  PubMed  Google Scholar 

  11. Chen M, Tan AH, Li J. Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/mTOR signaling. Nutr Cancer. 2023;75:726–733.

    CAS  PubMed  Google Scholar 

  12. Li J, Xu L, Zuo YX, Chang XQ, Chi HT. Potential intervention target of atherosclerosis: ferroptosis (Review). Mol Med Rep. 2022;26:343.

    PubMed  PubMed Central  Google Scholar 

  13. Pancewicz J, Niklinska WE, Chlanda A. Flake graphene-based nanomaterial approach for triggering a ferroptosis as an attractive theranostic outlook for tackling non-small lung cancer: a mini review. Materials (Basel). 2022;15:3456.

    PubMed  Google Scholar 

  14. Xu L, Huang X, Lou Y, Xie W, Zhao H. Regulation of apoptosis, autophagy and ferroptosis by non-coding RNAs in metastatic non-small cell lung cancer (Review). Exp Ther Med. 2022;23:352.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu M, Kong XY, Yao Y, Wang XA, Yang W, Wu H, et al. The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review. Ann Transl Med. 2022;10:368.

    PubMed  PubMed Central  Google Scholar 

  16. Moon SH, Huang CH, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP, et al. p53 represses the mevalonate pathway to mediate tumor suppression. Cell. 2019;176:564–80.e519.

    CAS  PubMed  Google Scholar 

  17. Boutelle AM, Attardi LD. p53 and tumor suppression: it takes a network. Trends Cell Biol. 2021;31:298–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Aubrey BJ, Strasser A, Kelly GL. Tumor-suppressor functions of the TP53 pathway. Cold Spring Harb Perspect Med. 2016;6:a026062.

    PubMed  PubMed Central  Google Scholar 

  19. Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212.

    PubMed  Google Scholar 

  20. Liu J, Zhang C, Wang J, Hu W, Feng Z. The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci. 2020;21:8387.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 2019;133:162–8.

    CAS  PubMed  Google Scholar 

  22. Kanapathipillai M. Treating p53 mutant aggregation-associated cancer. Cancers (Basel). 2018;10:154.

    PubMed  Google Scholar 

  23. Nyquist MD, Prasad B, Mostaghel EA. Harnessing solute carrier transporters for precision oncology. Molecules. 2017;22:539.

    PubMed  PubMed Central  Google Scholar 

  24. Hadley B, Litfin T, Day CJ, Haselhorst T, Zhou Y, Tiralongo J. Nucleotide sugar transporter SLC35 family structure and function. Comput Struct Biotechnol J. 2019;17:1123–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bu L, Jiang G, Yang F, Liu J, Wang J. Highly expressed SLC35F2 in non-small cell lung cancer is associated with pathological staging. Mol Med Rep. 2011;4:1289–93.

    CAS  PubMed  Google Scholar 

  26. Kotolloshi R, Holzer M, Gajda M, Grimm MO, Steinbach D. SLC35F2, a transporter sporadically mutated in the untranslated region, promotes growth, migration, and invasion of bladder cancer cells. Cells. 2021;10:80.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiou JT, Lee YC, Huang CH, Wang LJ, Shi YJ, Chang LS. Inhibition of Sp1-mediated survivin and MCL1 expression cooperates with SLC35F2 and myeloperoxidase to modulate YM155 cytotoxicity to human leukemia cells. Biochem Pharm. 2021;188:114544.

    CAS  PubMed  Google Scholar 

  28. Winter GE, Radic B, Mayor-Ruiz C, Blomen VA, Trefzer C, Kandasamy RK, et al. The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity. Nat Chem Biol. 2014;10:768–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Luo Y, Gao X, Zou L, Lei M, Feng J, Hu Z. Bavachin induces ferroptosis through the STAT3/P53/SLC7A11 axis in osteosarcoma cells. Oxid Med Cell Longev. 2021;2021:1783485.

    PubMed  PubMed Central  Google Scholar 

  30. Ma S, Sun L, Wu W, Wu J, Sun Z, Ren J. USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death. Front Physiol. 2020;11:551318.

    PubMed  PubMed Central  Google Scholar 

  31. Guan Z, Chen J, Li X, Dong N. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci Rep. 2020;40:BSR20201807.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022;29:946–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rocha S, Campbell KJ, Roche KC, Perkins ND. The p53-inhibitor pifithrin-alpha inhibits firefly luciferase activity in vivo and in vitro. BMC Mol Biol. 2003;4:9.

    PubMed  PubMed Central  Google Scholar 

  34. Zhou Z, Ji Z, Wang Y, Li J, Cao H, Zhu HH, et al. TRIM59 is up-regulated in gastric tumors, promoting ubiquitination and degradation of p53. Gastroenterology. 2014;147:1043–54.

    CAS  PubMed  Google Scholar 

  35. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29:347–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sha W, Hu F, Xi Y, Chu Y, Bu S. Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J Diabetes Res. 2021;2021:9999612.

    PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Wei Z, Pan K, Li J, Chen Q. The function and mechanism of ferroptosis in cancer. Apoptosis. 2020;25:786–98.

    CAS  PubMed  Google Scholar 

  38. Zhu J, Xiong Y, Zhang Y, Wen J, Cai N, Cheng K, et al. The molecular mechanisms of regulating oxidative stress-induced ferroptosis and therapeutic strategy in tumors. Oxid Med Cell Longev. 2020;2020:8810785.

    PubMed  PubMed Central  Google Scholar 

  39. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843.

    PubMed  PubMed Central  Google Scholar 

  40. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12:34.

    PubMed  PubMed Central  Google Scholar 

  42. Zhang S, Li Q, Yuan H, Ren L, Liang X, Li S, et al. Solute carrier family 35 member F2 regulates cisplatin resistance and promotes malignant progression of pancreatic cancer by regulating RNA binding motif protein 14. J Oncol. 2022;2022:5091154.

    PubMed  PubMed Central  Google Scholar 

  43. Ayka A, Sehirli AO. The role of the SLC transporters protein in the neurodegenerative disorders. Clin Psychopharmacol Neurosci. 2020;18:174–87.

    PubMed  Google Scholar 

  44. Gupta S, Burckhardt G, Hagos Y. SLC22 transporter family proteins as targets for cytostatic uptake into tumor cells. Biol Chem. 2011;392:117–24.

    CAS  PubMed  Google Scholar 

  45. Nishimura M, Suzuki S, Satoh T, Naito S. Tissue-specific mRNA expression profiles of human solute carrier 35 transporters. Drug Metab Pharmacokinet. 2009;24:91–99.

    CAS  PubMed  Google Scholar 

  46. Liu Y, Gu W. p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ. 2022;29:895–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol. 2021;192:45–54.

    CAS  PubMed  Google Scholar 

  48. Yu L, Wu M, Zhu G, Xu Y. Emerging roles of the tumor suppressor p53 in metabolism. Front Cell Dev Biol. 2021;9:762742.

    PubMed  Google Scholar 

  49. Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, et al. A G3BP1-interacting lncrna promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 2018;78:3484–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel). 2021;13:745.

    CAS  PubMed  Google Scholar 

  51. Liu R, Li H, Xu Y, Li X, Guo X, Shi J, et al. Blockade of TRIM59 enhances esophageal cancer cell chemosensitivity to cisplatin by upregulating p53. Oncol Lett. 2021;21:6.

    CAS  PubMed  Google Scholar 

  52. Chen S, Du Y, Xu B, Li Q, Yang L, Jiang Z, et al. Vaccinia-related kinase 2 blunts sorafenib’s efficacy against hepatocellular carcinoma by disturbing the apoptosis-autophagy balance. Oncogene. 2021;40:3378–93.

    CAS  PubMed  Google Scholar 

  53. Chen L, Yuan R, Wen C, Liu T, Feng Q, Deng X, et al. E3 ubiquitin ligase UBR5 promotes pancreatic cancer growth and aerobic glycolysis by downregulating FBP1 via destabilization of C/EBPalpha. Oncogene. 2021;40:262–76.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (82203493,82372769, 82060454, 81960522, 82160364, 82060449, and 82060466), the Project of the Jiangxi Provincial Department of Science and Technolog (20212ACB206024, 20212BCJ23022, 20232BCJ22016, 20224BAB206081, 20202BABL206084, 20192BAB205068, 20212BAB206044, and 20202BAB216032). The key research and development program of Jiangxi Province of China (20203BBGL73143). Outstanding Youth Fund of Jiangxi Cancer Hospital (2021DYS06).

Author information

Authors and Affiliations

Authors

Contributions

FLC conceived the research concept and design. FLC, KW, MW, WZ, and XXL implemented the methodological development and drafted, reviewed, and revised the manuscript. BC, YYD, FRY, HX, JS, SHZ, and QF collected, analyzed, and interpretated the data and conducted statistical analysis of the data; MFX, YY, LH, and XHD extended material and technical support. All the authors read and authorized the final version of the paper.

Corresponding authors

Correspondence to Xiuxia Liu, Wei Zhou, Kai Wang or Leifeng Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, B., Du, Y., Yuan, R. et al. SLC35F2–SYVN1–TRIM59 axis critically regulates ferroptosis of pancreatic cancer cells by inhibiting endogenous p53. Oncogene 42, 3260–3273 (2023). https://doi.org/10.1038/s41388-023-02843-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02843-y

Search

Quick links