Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lnc00892 competes with c-Jun to block NCL transcription, reducing the stability of RhoA/RhoC mRNA and impairing bladder cancer invasion

Abstract

Metastasis of bladder cancer is a complex process and has been associated with poor clinical outcomes. However, the mechanisms of bladder cancer metastasis remain largely unknown. The present study found that the long noncoding RNA lnc00892 was significantly downregulated in bladder cancer tissues, with low lnc00892 expression associated with poor prognosis of bladder cancer patients. Lnc00892 significantly inhibited the migration, invasion, and metastasis of bladder cancer cells in vitro and in vivo. In-depth analysis showed that RhoA/C acted downstream of lnc00892 to inhibit bladder cancer metastasis. Mechanistically, lnc00892 reduces nucleolin gene transcription by competitively binding the promoter of nucleolin with c-Jun, thereby inhibiting nucleolin-mediated stabilization of RhoA/RhoC mRNA. Taken together, these findings provide novel insights into understanding the mechanisms of bladder cancer metastasis and suggest that lnc00892 can serve as a potential therapeutic target in patients with invasive bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of lnc00892 is significantly lower in the bladder cancer than in the normal bladder tissues and is closely related to the patient’s survival rate.
Fig. 2: Lnc00892 inhibition of bladder cancer cell invasion in vitro and in vivo.
Fig. 3: RhoA and RhoC function downstream of lnc00892 as effectors of BC metastasis.
Fig. 4: Lnc00892 downregulates RhoA and RhoC expression by reducing the stability of their mRNAs in human BC cells.
Fig. 5: Effect of lnc00892 on NCL-mediated regulation of the stability of RhoA and RhoC mRNAs.
Fig. 6: The site of the NCL promoter (−1161 to −895 bp) is involved in the function of lnc00892.
Fig. 7: Specific sites on lnc00892 compete with c-Jun for binding to NCL.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: A Cancer J clinicians. 2020;70:7–30.

    Google Scholar 

  2. Jordan B, Meeks JJ. T1 bladder cancer: current considerations for diagnosis and management. Nat Rev Urol. 2019;16:23–34.

    Article  PubMed  Google Scholar 

  3. Hua X, Huang M, Deng X, Xu J, Luo Y, Xie Q, et al. The inhibitory effect of compound ChlA-F on human bladder cancer cell invasion can be attributed to its blockage of SOX2 protein. Cell Death Differ. 2020;27:632–45.

    Article  CAS  PubMed  Google Scholar 

  4. Zhan Y, Du L, Wang L, Jiang X, Zhang S, Li J, et al. Expression signatures of exosomal long non-coding RNAs in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Mol Cancer. 2018;17:142.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Meeks JJ, Bellmunt J, Bochner BH, Clarke NW, Daneshmand S, Galsky MD, et al. A systematic review of neoadjuvant and adjuvant chemotherapy for muscle-invasive bladder cancer. Eur Urol. 2012;62:523–33.

    Article  CAS  PubMed  Google Scholar 

  6. Yoshino H, Seki N, Itesako T, Chiyomaru T, Nakagawa M, Enokida H. Aberrant expression of microRNAs in bladder cancer. Nat Rev Urol. 2013;10:396–404.

    Article  CAS  PubMed  Google Scholar 

  7. Evans JR, Feng FY, Chinnaiyan AM. The bright side of dark matter: lncRNAs in cancer. J Clin Investig. 2016;126:2775–82.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martens-Uzunova ES, Bottcher R, Croce CM, Jenster G, Visakorpi T, Calin GA. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 2014;65:1140–51.

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Li G, Guo X, Yao H, Wang G, Li C. Non-coding RNA in bladder cancer. Cancer Lett. 2020;485:38–44.

    Article  CAS  PubMed  Google Scholar 

  10. He W, Zhong G, Jiang N, Wang B, Fan X, Chen C, et al. Long noncoding RNA BLACAT2 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis. J Clin Investig. 2018;128:861–75.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhan Y, Chen Z, He S, Gong Y, He A, Li Y, et al. Long non-coding RNA SOX2OT promotes the stemness phenotype of bladder cancer cells by modulating SOX2. Mol Cancer. 2020;19:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen C, Luo Y, He W, Zhao Y, Kong Y, Liu H, et al. Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J Clin Investig. 2020;130:404–21.

    Article  CAS  PubMed  Google Scholar 

  13. Chen C, He W, Huang J, Wang B, Li H, Cai Q, et al. LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun. 2018;9:3826.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lin G, Guo B, Wei Y, Lan T, Wen S, Li G. Impact of Long Non-coding RNAs Associated With Microenvironment on Survival for Bladder Cancer Patients. Front Genet. 2020;11:567200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kabaso D, Lokar M, Kralj-Iglic V, Veranic P, Iglic A. Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines. Int J Nanomed. 2011;6:495–509.

    Article  CAS  Google Scholar 

  16. Seraj MJ, Harding MA, Gildea JJ, Welch DR, Theodorescu D. The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin Exp Metastasis. 2000;18:519–25.

    Article  CAS  PubMed  Google Scholar 

  17. Zuiverloon TCM, de Jong FC, Costello JC, Theodorescu D. Systematic review: characteristics and preclinical uses of bladder cancer cell lines. Bladder Cancer. 2018;4:169–83.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Diring J, Mouilleron S, McDonald NQ, Treisman R. RPEL-family rhoGAPs link Rac/Cdc42 GTP loading to G-actin availability. Nat Cell Biol. 2019;21:845–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Caswell PT, Vadrevu S, Norman JC. Integrins: masters and slaves of endocytic transport. Nat Rev Mol Cell Biol. 2009;10:843–53.

    Article  CAS  PubMed  Google Scholar 

  20. Yan C, Liu D, Li L, Wempe MF, Guin S, Khanna M, et al. Discovery and characterization of small molecules that target the GTPase Ral. Nature. 2014;515:443–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci. 2016;17:868.

    Article  PubMed Central  Google Scholar 

  22. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kramer S, Carrington M. Trans-acting proteins regulating mRNA maturation, stability and translation in trypanosomatids. Trends Parasitol. 2011;27:23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, Clark AR. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol. 2000;20:4265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abdelmohsen K, Gorospe M. Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip Rev RNA. 2010;1:214–29.

    Article  CAS  PubMed  Google Scholar 

  26. Yu Y, Jin H, Xu J, Gu J, Li X, Xie Q, et al. XIAP overexpression promotes bladder cancer invasion in vitro and lung metastasis in vivo via enhancing nucleolin-mediated Rho-GDIbeta mRNA stability. Int J Cancer. 2018;142:2040–55.

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454:126–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15:7–21.

    Article  CAS  PubMed  Google Scholar 

  29. Salviano-Silva A, Lobo-Alves SC, Almeida RC, Malheiros D, Petzl-Erler ML. Besides Pathology: Long Non-Coding RNA in Cell and Tissue Homeostasis. Noncoding RNA. 2018;4:3.

    Article  PubMed Central  Google Scholar 

  30. Chen LL. Linking long noncoding RNA localization and function. Trends Biochem Sci. 2016;41:761–72.

    Article  CAS  PubMed  Google Scholar 

  31. Marin-Bejar O, Mas AM, Gonzalez J, Martinez D, Athie A, Morales X, et al. The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biol. 2017;18:202.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ni W, Zhang Y, Zhan Z, Ye F, Liang Y, Huang J, et al. A novel lncRNA uc.134 represses hepatocellular carcinoma progression by inhibiting CUL4A-mediated ubiquitination of LATS1. J Hematol Oncol. 2017;10:91.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Amodio N, Raimondi L, Juli G, Stamato MA, Caracciolo D, Tagliaferri P, et al. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol. 2018;11:63.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu G, Ye Z, Zhao X, Ji Z. SP1-induced up-regulation of lncRNA SNHG14 as a ceRNA promotes migration and invasion of clear cell renal cell carcinoma by regulating N-WASP. Am J Cancer Res. 2017;7:2515–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu Y, Zhang L, He S, Guan B, He A, Yang K, et al. Identification of immune-related LncRNA for predicting prognosis and immunotherapeutic response in bladder cancer. Aging. 2020;12:23306–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmitt AM, Chang HY. Long Noncoding RNAs in Cancer Pathways. Cancer Cell. 2016;29:452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 2017;36:5661–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang Y, et al. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet. 2018;50:1705–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, et al. LncRNA GClnc1 Promotes Gastric Carcinogenesis and May Act as a Modular Scaffold of WDR5 and KAT2A Complexes to Specify the Histone Modification Pattern. Cancer Discov. 2016;6:784–801.

    Article  CAS  PubMed  Google Scholar 

  40. Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer. 2002;2:133–42.

    Article  PubMed  Google Scholar 

  41. Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett. 2008;582:2093–101.

    Article  CAS  PubMed  Google Scholar 

  42. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406:532–5.

    Article  CAS  PubMed  Google Scholar 

  43. Simpson KJ, Dugan AS, Mercurio AM. Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res. 2004;64:8694–701.

    Article  CAS  PubMed  Google Scholar 

  44. Tang Y, Olufemi L, Wang MT, Nie D. Role of Rho GTPases in breast cancer. Front Biosci: J Virtual Libr. 2008;13:759–76.

    Article  CAS  Google Scholar 

  45. Kim JG, Islam R, Cho JY, Jeong H, Cap KC, Park Y, et al. Regulation of RhoA GTPase and various transcription factors in the RhoA pathway. J Cell Physiol. 2018;233:6381–92.

    Article  CAS  PubMed  Google Scholar 

  46. Nomikou E, Livitsanou M, Stournaras C, Kardassis D. Transcriptional and post-transcriptional regulation of the genes encoding the small GTPases RhoA, RhoB, and RhoC: implications for the pathogenesis of human diseases. Cell Mol Life Sci: CMLS. 2018;75:2111–24.

    Article  CAS  PubMed  Google Scholar 

  47. Jia W, Yao Z, Zhao J, Guan Q, Gao L. New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci. 2017;186:1–10.

    Article  CAS  PubMed  Google Scholar 

  48. Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 2005;123:49–63.

    Article  CAS  PubMed  Google Scholar 

  49. Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res. 2008;68:2358–65.

    Article  CAS  PubMed  Google Scholar 

  50. Wang X, Yu H, Sun W, Kong J, Zhang L, Tang J, et al. The long non-coding RNA CYTOR drives colorectal cancer progression by interacting with NCL and Sam68. Mol Cancer. 2018;17:110.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Berger CM, Gaume X, Bouvet P. The roles of nucleolin subcellular localization in cancer. Biochimie. 2015;113:78–85.

    Article  CAS  PubMed  Google Scholar 

  52. Sun J, Zhang Z, Bao S, Yan C, Hou P, Wu N, et al.Identification of tumor immune infiltration-associated lncRNAs for improving prognosis and immunotherapy response of patients with non-small cell lung cancer.J. Immun. Cancer. 2020;8:e000110.

    Article  Google Scholar 

  53. Kim J, Abdelmohsen K, Yang X, De S, Grammatikakis I, Noh JH, et al. LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR. Nucleic Acids Res. 2016;44:2378–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tan X, Chen WB, Lv DJ, Yang TW, Wu KH, Zou LB, et al. LncRNA SNHG1 and RNA binding protein hnRNPL form a complex and coregulate CDH1 to boost the growth and metastasis of prostate cancer. Cell Death Dis. 2021;12:138.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang X, Zhou Y, Chen S, Li W, Chen W, Gu W. LncRNA MACC1-AS1 sponges multiple miRNAs and RNA-binding protein PTBP1. Oncogenesis. 2019;8:73.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013;425:3723–30.

    Article  CAS  PubMed  Google Scholar 

  57. Liu H, Deng H, Zhao Y, Li C, Liang Y. LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res: CR. 2018;37:279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang J, Zhang A, Ho TT, Zhang Z, Zhou N, Ding X, et al. Linc-RoR promotes c-Myc expression through hnRNP I and AUF1. Nucleic acids Res. 2016;44:3059–69.

    Article  CAS  PubMed  Google Scholar 

  59. Jin H, Ma J, Xu J, Li H, Chang Y, Zang N, et al. Oncogenic role of MIR516A in human bladder cancer was mediated by its attenuating PHLPP2 expression and BECN1-dependent autophagy. Autophagy. 2020;4:840–854.

    Google Scholar 

  60. Peng M, Wang J, Tian Z, Zhang D, Jin H, Liu C, et al. Autophagy-mediated Mir6981 degradation exhibits CDKN1B promotion of PHLPP1 protein translation. Autophagy. 2019;15:1523–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Science Foundation of China NSFC81702530, and Wenzhou Science and Technology Bureau (Y20190065), Key Discipline of Zhejiang Province in Medical Technology (First Class, Category A).

Author information

Authors and Affiliations

Authors

Contributions

HLJ and SWR conceived and designed the project. SWR, NZ, LPS, YXC, ZNL, and NS performed experiments and conducted the statistical analysis; YYL collected the clinical samples; SWR and YMZ performed the animal studies and constructed the plasmids; SWR, NZ, and JHX contributed the bioinformatic analysis; HLJ, SWR, and NZ prepared, wrote the manuscript. HLJ, HSH, and NZ revised the paper. All authors read, discussed the results, and approved the final version of the paper.

Corresponding author

Correspondence to Honglei Jin.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the ethics committee of Wenzhou Medical University. All the animal experiments performed in the present study were approved by the regulation of the experimental animal ethics committee of Wenzhou Medical University.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Zhang, N., Shen, L. et al. Lnc00892 competes with c-Jun to block NCL transcription, reducing the stability of RhoA/RhoC mRNA and impairing bladder cancer invasion. Oncogene 40, 6579–6589 (2021). https://doi.org/10.1038/s41388-021-02033-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02033-8

This article is cited by

Search

Quick links