Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oxidative stress in obesity-associated hepatocellular carcinoma: sources, signaling and therapeutic challenges

Abstract

Obesity affects more than 650 million individuals worldwide and is a well-established risk factor for the development of hepatocellular carcinoma (HCC). Oxidative stress can be considered as a bona fide tumor promoter, contributing to the initiation and progression of liver cancer. Indeed, one of the key events involved in HCC progression is excessive levels of reactive oxygen species (ROS) resulting from the fatty acid influx and chronic inflammation. This review provides insights into the different intracellular sources of obesity-induced ROS and molecular mechanisms responsible for hepatic tumorigenesis. In addition, we highlight recent findings pointing to the role of the dysregulated activity of BCL-2 proteins and protein tyrosine phosphatases (PTPs) in the generation of hepatic oxidative stress and ROS-mediated dysfunctional signaling, respectively. Finally, we discuss the potential and challenges of novel nanotechnology strategies to prevent ROS formation in obesity-associated HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Progression from nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH), fibrosis, and HCC.
Fig. 2: ROS production in different cell compartments and their contributions to HCC development.
Fig. 3: Redox-regulated transcription factors.
Fig. 4: BCL-2 family proteins are components of programmed cell death that can also regulate cellular metabolism.
Fig. 5: Protein tyrosine phosphatases (PTPs) are important modulators of the insulin receptor (IR) and PTP oxidation plays a role in insulin resistance.
Fig. 6: Obesity contributes to the development of NASH and HCC by independent mechanisms.
Fig. 7: Schematic illustration of nanotheronostic agents targeting oxidative stress-dependent pathways in obesity-associated HCC.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.

    Article  CAS  PubMed  Google Scholar 

  3. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20.

    Article  PubMed  Google Scholar 

  4. Baffy G. Hepatocellular carcinoma in obesity: finding a needle in the haystack? Adv Exp Med Biol. 2018;1061:63–77.

    Article  CAS  PubMed  Google Scholar 

  5. Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16:411–28.

    Article  PubMed  Google Scholar 

  6. Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 2019;76:99–128.

    Article  CAS  PubMed  Google Scholar 

  7. Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol. 2021;18:45–56.

    Article  CAS  PubMed  Google Scholar 

  8. Raza S, Rajak S, Anjum B, Sinha RA. Molecular links between non-alcoholic fatty liver disease and hepatocellular carcinoma. Hepatoma Res. 2019;5:42.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363–383.

    Article  CAS  PubMed  Google Scholar 

  10. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122:877–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liang S, Kisseleva T, Brenner DA. The role of NADPH oxidases (NOXs) in liver fibrosis and the activation of myofibroblasts. Front Physiol. 2016;7:17.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sunny NE, Bril F, Cusi K. Mitochondrial adaptation in nonalcoholic fatty liver disease: novel mechanisms and treatment strategies. Trends Endocrinol Metab. 2017;28:250–60.

    Article  CAS  PubMed  Google Scholar 

  13. Bellanti F, Villani R, Facciorusso A, Vendemiale G, Serviddio G. Lipid oxidation products in the pathogenesis of non-alcoholic steatohepatitis. Free Radic Biol Med. 2017;111:173–85.

    Article  CAS  PubMed  Google Scholar 

  14. Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, Jankowiak F, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21:739–46.

    Article  CAS  PubMed  Google Scholar 

  15. Fransen M, Lismont C, Walton P. The peroxisome-mitochondria connection: How and why? Int J Mol Sci. 2017;18:1126.

    Article  PubMed Central  CAS  Google Scholar 

  16. Lismont C, Nordgren M, Van Veldhoven PP, Fransen M. Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol. 2015;3:35.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T. Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J. 2008;275:3278–89.

    Article  CAS  PubMed  Google Scholar 

  18. Loughran PA, Stolz DB, Vodovotz Y, Watkins SC, Simmons RL, Billiar TR. Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes. Proc Natl Acad Sci USA. 2005;102:13837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stolz DB, Zamora R, Vodovotz Y, Loughran PA, Billiar TR, Kim YM, et al. Peroxisomal localization of inducible nitric oxide synthase in hepatocytes. Hepatology. 2002;36:81–93.

    Article  CAS  PubMed  Google Scholar 

  20. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21:396–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoboue ED, Sitia R, Simmen T. Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death Dis. 2018;9:331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bettaieb A, Jiang JX, Sasaki Y, Chao TI, Kiss Z, Chen X, et al. Hepatocyte nicotinamide adenine dinucleotide phosphate reduced oxidase 4 regulates stress signaling, fibrosis, and insulin sensitivity during development of steatohepatitis in mice. Gastroenterology. 2015;149:468–80 e410.

    Article  CAS  PubMed  Google Scholar 

  23. Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, Ogata H, et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell. 2014;26:331–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Al-Serri A, Anstee QM, Valenti L, Nobili V, Leathart JB, Dongiovanni P, et al. The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. J Hepatol. 2012;56:448–54.

    Article  CAS  PubMed  Google Scholar 

  25. Fares R, Petta S, Lombardi R, Grimaudo S, Dongiovanni P, Pipitone R, et al. The UCP2 -866 G>A promoter region polymorphism is associated with nonalcoholic steatohepatitis. Liver Int. 2015;35:1574–80.

    Article  CAS  PubMed  Google Scholar 

  26. Emdin CA, Haas ME, Khera AV, Aragam K, Chaffin M, Klarin D, et al. A missense variant in mitochondrial amidoxime reducing component 1 gene and protection against liver disease. PLoS Genet. 2020;16:e1008629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sparacino-Watkins CE, Tejero J, Sun B, Gauthier MC, Thomas J, Ragireddy V, et al. Nitrite reductase and nitric-oxide synthase activity of the mitochondrial molybdopterin enzymes mARC1 and mARC2. J Biol Chem. 2014;289:10345–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneider J, Girreser U, Havemeyer A, Bittner F, Clement B. Detoxification of trimethylamine N-oxide by the mitochondrial amidoxime reducing component mARC. Chem Res Toxicol. 2018;31:447–53.

    Article  CAS  PubMed  Google Scholar 

  29. Wang B, Huang G, Wang D, Li A, Xu Z, Dong R, et al. Null genotypes of GSTM1 and GSTT1 contribute to hepatocellular carcinoma risk: evidence from an updated meta-analysis. J Hepatol. 2010;53:508–18.

    Article  PubMed  CAS  Google Scholar 

  30. Brown KE, Brunt EM, Heinecke JW. Immunohistochemical detection of myeloperoxidase and its oxidation products in Kupffer cells of human liver. Am J Pathol. 2001;159:2081–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nahon P, Sutton A, Rufat P, Ziol M, Akouche H, Laguillier C, et al. Myeloperoxidase and superoxide dismutase 2 polymorphisms comodulate the risk of hepatocellular carcinoma and death in alcoholic cirrhosis. Hepatology. 2009;50:1484–93.

    Article  CAS  PubMed  Google Scholar 

  32. Nishida N, Yada N, Hagiwara S, Sakurai T, Kitano M, Kudo M. Unique features associated with hepatic oxidative DNA damage and DNA methylation in non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2016;31:1646–53.

    Article  CAS  PubMed  Google Scholar 

  33. Tummala KS, Gomes AL, Yilmaz M, Grana O, Bakiri L, Ruppen I, et al. Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell. 2014;26:826–39.

    Article  CAS  PubMed  Google Scholar 

  34. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44:694–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer. 2012;12:564–71.

    Article  CAS  PubMed  Google Scholar 

  36. Broadfield LA, Duarte JAG, Schmieder R, Broekaert D, Veys K, Planque M, et al. Fat induces glucose metabolism in nontransformed liver cells and promotes liver tumorigenesis. Cancer Res. 2021;81:1988–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lally JSV, Ghoshal S, DePeralta DK, Moaven O, Wei L, Masia R, et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 2019;29:174–82 e175.

    Article  CAS  PubMed  Google Scholar 

  38. Guri Y, Colombi M, Dazert E, Hindupur SK, Roszik J, Moes S, et al. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell. 2017;32:807–23 e812.

    Article  CAS  PubMed  Google Scholar 

  39. Liu MX, Jin L, Sun SJ, Liu P, Feng X, Cheng ZL, et al. Metabolic reprogramming by PCK1 promotes TCA cataplerosis, oxidative stress and apoptosis in liver cancer cells and suppresses hepatocellular carcinoma. Oncogene. 2018;37:1637–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bian XL, Chen HZ, Yang PB, Li YP, Zhang FN, Zhang JY, et al. Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation. Nat Commun. 2017;8:14420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wree A, Eguchi A, McGeough MD, Pena CA, Johnson CD, Canbay A, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology. 2014;59:898–910.

    Article  CAS  PubMed  Google Scholar 

  42. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12:408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wei Q, Mu K, Li T, Zhang Y, Yang Z, Jia X, et al. Deregulation of the NLRP3 inflammasome in hepatic parenchymal cells during liver cancer progression. Lab Invest. 2014;94:52–62.

    Article  CAS  PubMed  Google Scholar 

  44. Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S, et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009;10:260–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G, et al. The NAD(P)H oxidase homolog nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Antioxid Redox Signal. 2004;24:1844–54.

    CAS  Google Scholar 

  46. Tiganis T. Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharm Sci. 2011;32:82–89.

    Article  CAS  PubMed  Google Scholar 

  47. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tao J, Krutsenko Y, Moghe A, Singh S, Poddar M, Bell A, et al. Nrf2 and beta-catenin coactivation in hepatocellular cancer: biological and therapeutic implications. Hepatology. 2021. https://doi.org/10.1002/hep.31730.

  49. Taniguchi K, Karin M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    Article  CAS  PubMed  Google Scholar 

  50. Luedde T, Schwabe RF. NF-kappaB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8:108–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scotcher J, Clarke DJ, Weidt SK, Mackay CL, Hupp TR, Sadler PJ, et al. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. J Am Soc Mass Spectrom. 2011;22:888–97.

    Article  CAS  PubMed  Google Scholar 

  52. Liu D, Xu Y. p53 Oxidative stress and aging. Antioxid Redox Signal. 2011;15:1669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tomita K, Teratani T, Suzuki T, Oshikawa T, Yokoyama H, Shimamura K, et al. p53/p66Shc-mediated signaling contributes to the progression of non-alcoholic steatohepatitis in humans and mice. J Hepatol. 2012;57:837–43.

    Article  CAS  PubMed  Google Scholar 

  54. Derdak Z, Villegas KA, Harb R, Wu AM, Sousa A, Wands JR. Inhibition of p53 attenuates steatosis and liver injury in a mouse model of non-alcoholic fatty liver disease. J Hepatol. 2013;58:785–91.

    Article  CAS  PubMed  Google Scholar 

  55. Kim TH, Kim YE, Ahn S, Kim JY, Ki CS, Oh YL, et al. TERT promoter mutations and long-term survival in patients with thyroid cancer. Endocr Relat Cancer. 2016;23:813–23.

    Article  CAS  PubMed  Google Scholar 

  56. Wilson GK, Tennant DA, McKeating JA. Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions. J Hepatol. 2014;61:1397–1406.

    Article  CAS  PubMed  Google Scholar 

  57. Gross A, Katz SG. Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ. 2017;24:1348–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramalho RM, Cortez-Pinto H, Castro RE, Sola S, Costa A, Moura MC, et al. Apoptosis and Bcl-2 expression in the livers of patients with steatohepatitis. Eur J Gastroenterol Hepatol. 2006;18:21–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lee S, Kim S, Hwang S, Cherrington NJ, Ryu DY. Dysregulated expression of proteins associated with ER stress, autophagy and apoptosis in tissues from nonalcoholic fatty liver disease. Oncotarget. 2017;8:63370–81.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Litwak SA, Pang L, Galic S, Igoillo-Esteve M, Stanley WJ, Turatsinze JV, et al. JNK activation of BIM promotes hepatic oxidative stress, steatosis, and insulin resistance in obesity. Diabetes. 2017;66:2973–86.

    Article  CAS  PubMed  Google Scholar 

  61. Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21:678–95.

    Article  CAS  PubMed  Google Scholar 

  62. Marquardt JU, Edlich F. Predisposition to apoptosis in hepatocellular carcinoma: from mechanistic insights to therapeutic strategies. Front Oncol. 2019;9:1421.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, et al. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol. 2018;24:2661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25:65–80.

    Article  CAS  PubMed  Google Scholar 

  65. Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature. 2003;424:952–6.

    Article  CAS  PubMed  Google Scholar 

  66. Susnow N, Zeng L, Margineantu D, Hockenbery DM. Bcl-2 family proteins as regulators of oxidative stress. Semin Cancer Biol. 2009;19:42–9.

    Article  CAS  PubMed  Google Scholar 

  67. Wali JA, Galic S, Tan CY, Gurzov EN, Frazier AE, Connor T, et al. Loss of BIM increases mitochondrial oxygen consumption and lipid oxidation, reduces adiposity and improves insulin sensitivity in mice. Cell Death Differ. 2018;25:217–25.

    Article  CAS  PubMed  Google Scholar 

  68. Giordano A, Calvani M, Petillo O, Grippo P, Tuccillo F, Melone MA, et al. tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1. Cell Death Differ. 2005;12:603–13.

    Article  CAS  PubMed  Google Scholar 

  69. Danial NN, Walensky LD, Zhang CY, Choi CS, Fisher JK, Molina AJ, et al. Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med. 2008;14:144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018;2018:9547613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, et al. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol Cell Biol. 2012;32:2570–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li X, Wang J, Gong X, Zhang M, Kang S, Shu B, et al. Upregulation of BCL-2 by acridone derivative through gene promoter i-motif for alleviating liver damage of NAFLD/NASH. Nucleic Acids Res. 2020;48:8255–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li D, Ueta E, Kimura T, Yamamoto T, Osaki T. Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci. 2004;95:644–650.

    Article  CAS  PubMed  Google Scholar 

  74. Merino D, Kelly GL, Lessene G, Wei AH, Roberts AW, Strasser A. BH3-mimetic drugs: blazing the trail for new cancer medicines. Cancer Cell. 2018;34:879–91.

    Article  CAS  PubMed  Google Scholar 

  75. Bourebaba L, Lyczko J, Alicka M, Bourebaba N, Szumny A, Fal AM, et al. Inhibition of protein-tyrosine phosphatase PTP1B and LMPTP promotes palmitate/oleate-challenged HepG2 cell survival by reducing lipoapoptosis, improving mitochondrial dynamics and mitigating oxidative and endoplasmic reticulum stress. J Clin Med. 2020;9:1294.

    Article  PubMed Central  CAS  Google Scholar 

  76. Hsu MF, Koike S, Mello A, Nagy LE, Haj FG. Hepatic protein-tyrosine phosphatase 1B disruption and pharmacological inhibition attenuate ethanol-induced oxidative stress and ameliorate alcoholic liver disease in mice. Redox Biol. 2020;36:101658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mobasher MA, Gonzalez-Rodriguez A, Santamaria B, Ramos S, Martin MA, Goya L, et al. Protein tyrosine phosphatase 1B modulates GSK3beta/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Cell Death Dis. 2013;4:e626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fukushima A, Loh K, Galic S, Fam B, Shields B, Wiede F, et al. T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis. Diabetes. 2010;59:1906–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dubois MJ, Bergeron S, Kim HJ, Dombrowski L, Perreault M, Fournes B, et al. The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nat Med. 2006;12:549–56.

    Article  CAS  PubMed  Google Scholar 

  80. Xu E, Charbonneau A, Rolland Y, Bellmann K, Pao L, Siminovitch KA, et al. Hepatocyte-specific Ptpn6 deletion protects from obesity-linked hepatic insulin resistance. Diabetes. 2012;61:1949–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Matsuo K, Delibegovic M, Matsuo I, Nagata N, Liu S, Bettaieb A, et al. Altered glucose homeostasis in mice with liver-specific deletion of Src homology phosphatase 2. J Biol Chem. 2010;285:39750–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cho CY, Koo SH, Wang Y, Callaway S, Hedrick S, Mak PA, et al. Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metab. 2006;3:367–78.

    Article  CAS  PubMed  Google Scholar 

  83. Kim M, Baek M, Kim DJ. Protein tyrosine signaling and its potential therapeutic implications in carcinogenesis. Curr Pharm Des. 2017;23:4226–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The roles of protein tyrosine phosphatases in hepatocellular carcinoma. Cancers. 2018;10:82.

    Article  PubMed Central  CAS  Google Scholar 

  85. Meng T-C, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol Cell. 2002;9:387–99.

    Article  CAS  PubMed  Google Scholar 

  86. Bhattacharya S, Labutti JN, Seiner DR, Gates KS. Oxidative inactivation of protein tyrosine phosphatase 1B by organic hydroperoxides. Bioorg Med Chem Lett. 2008;18:5856–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ostman A, Frijhoff J, Sandin A, Böhmer FD. Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem. 2011;150:345–56.

    Article  PubMed  CAS  Google Scholar 

  88. Gurzov EN, Stanley WJ, Brodnicki TC, Thomas HE. Protein tyrosine phosphatases: molecular switches in metabolism and diabetes. Trends Endocrinol Metab. 2015;26:30–9.

    Article  CAS  PubMed  Google Scholar 

  89. Lou YW, Chen YY, Hsu SF, Chen RK, Lee CL, Khoo KH, et al. Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. FEBS J. 2008;275:69–88.

    Article  CAS  PubMed  Google Scholar 

  90. Boivin B, Zhang S, Arbiser JL, Zhang ZY, Tonks NK. A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells. Proc Natl Acad Sci USA. 2008;105:9959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hussein UK, Park HS, Bae JS, Kim KM, Chong YJ, Kim CY, et al. Expression of oxidized protein tyrosine phosphatase and gammaH2AX predicts poor survival of gastric carcinoma patients. BMC Cancer. 2018;18:836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Gurzov EN, Tran M, Fernandez-Rojo MA, Merry TL, Zhang X, Xu Y, et al. Hepatic oxidative stress promotes insulin-STAT-5 signaling and obesity by inactivating protein tyrosine phosphatase N2. Cell Metab. 2014;20:85–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grohmann M, Wiede F, Dodd GT, Gurzov EN, Ooi GJ, Butt T, et al. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC. Cell. 2018;175:1289–1306 e1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Goh GB, McCullough AJ. Natural history of nonalcoholic fatty liver disease. Dig Dis Sci. 2016;61:1226–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Haque A, Andersen JN, Salmeen A, Barford D, Tonks NK. Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Cell. 2011;147:185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Krishnan N, Bonham CA, Rus IA, Shrestha OK, Gauss CM, Haque A, et al. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development. Nat Commun. 2018;9:283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Llovet JM, De Baere T, Kulik L, Haber PK, Greten TF, Meyer T, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:293–13.

    Article  CAS  PubMed  Google Scholar 

  98. Nakajima W, Tanaka N. BH3 mimetics: their action and efficacy in cancer chemotherapy. Integr Cancer Sci Therapeutics. 2016;3:437–41.

    Article  Google Scholar 

  99. Bartneck M, Warzecha KT, Tacke F. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine. Hepatobiliary Surg Nutr. 2014;3:364–76.

    PubMed  PubMed Central  Google Scholar 

  100. Nisha R, Kumar P, Kumar U, Mishra N, Maurya P, Singh S, et al. Fabrication of imatinib mesylate-loaded lactoferrin-modified PEGylated liquid crystalline nanoparticles for mitochondrial-dependent apoptosis in hepatocellular carcinoma. Mol Pharmaceutics. 2020;18:1102–20.

    Article  CAS  Google Scholar 

  101. Cao N, Cheng D, Zou S, Ai H, Gao J, Shuai X. The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells. Biomaterials. 2011;32:2222–32.

    Article  CAS  PubMed  Google Scholar 

  102. Zhou Y, Li K, Li F, Han S, Wang Y, Li X, et al. Doxorubicin and ABT-199 coencapsulated nanocarriers for targeted delivery and synergistic treatment against hepatocellular carcinoma. J Nanomaterials. 2019;2019:1–13.

    Google Scholar 

  103. Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011;22:1879–903.

    Article  CAS  Google Scholar 

  104. Ye Z, Wu W, Qin Y, Hu J, Liu C, Seeberger PH, et al. An integrated therapeutic delivery system for enhanced treatment of hepatocellular carcinoma. Adv Funct Mater. 2018;28:1706600.

    Article  CAS  Google Scholar 

  105. Tanaka T, Yamanaka N, Oriyama T, Furukawa K, Okamoto E. Factors regulating tumor pressure in hepatocellular carcinoma and implications for tumor spread. Hepatology. 1997;26:283–7.

    Article  CAS  PubMed  Google Scholar 

  106. Ke PC, Lin S, Parak WJ, Davis TP, Caruso F. A decade of the protein corona. ACS Nano. 2017;11:11773–6.

    Article  CAS  PubMed  Google Scholar 

  107. Dai Q, Walkey C, Chan WCW. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew Chem Int Ed. 2014;53:5093–6.

    Article  CAS  Google Scholar 

  108. D’Hollander A, Jans H, Velde GV, Verstraete C, Massa S, Devoogdt N, et al. Limiting the protein corona: a successful strategy for in vivo active targeting of anti-HER2 nanobody-functionalized nanostars. Biomaterials. 2017;123:15–23.

    Article  PubMed  CAS  Google Scholar 

  109. Kumar M, Gupta D, Singh G, Sharma S, Bhat M, Prashant CK, et al. Novel polymeric nanoparticles for intracellular delivery of peptide cargos: antitumor efficacy of the BCL-2 conversion peptide NuBCP-9. Cancer Res. 2014;74:3271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kumar P, Gautam AK, Kumar U, Bhadauria AS, Singh AK, Kumar D, et al. Mechanistic exploration of the activities of poly(lactic-co-glycolic acid)-loaded nanoparticles of betulinic acid against hepatocellular carcinoma at cellular and molecular levels. Arch Physiol Biochem 2020:1–13.

  111. Huang Y, Zhou B, Luo H, Mao J, Huang Y, Zhang K, et al. ZnAs@SiO(2) nanoparticles as a potential anti-tumor drug for targeting stemness and epithelial-mesenchymal transition in hepatocellular carcinoma via SHP-1/JAK2/STAT3 signaling. Theranostics. 2019;9:4391–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Khan AA, Alanazi AM, Jabeen M, Hassan I, Bhat MA. Targeted nano-delivery of novel omega-3 conjugate against hepatocellular carcinoma: regulating COX-2/bcl-2 expression in an animal model. Biomedicine Pharmacother. 2016;81:394–401.

    Article  CAS  Google Scholar 

  113. Li X, Zhang H, Zheng D, Ding J, Xu H, Sun W. Efficient delivery of ursolic acid by poly(N-vinylpyrrolidone)-block-poly (ε-caprolactone) nanoparticles for inhibiting the growth of hepatocellular carcinoma in vitro and in vivo. Int J Nanomed. 2015;10:1909–20.

    Article  CAS  Google Scholar 

  114. Yu M, Han S, Kou Z, Dai J, Liu J, Wei C, et al. Lipid nanoparticle-based co-delivery of epirubicin and BCL-2 siRNA for enhanced intracellular drug release and reversing multidrug resistance. Artif Cells Nanomed Biotechnol. 2018;46:323–32.

    Article  CAS  PubMed  Google Scholar 

  115. Cheng H, Wu Z, Wu C, Wang X, Liow SS, Li Z, et al. Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells. Mater Sci Eng: C. 2018;83:210–17.

    Article  CAS  Google Scholar 

  116. Tian G, Pan R, Zhang B, Qu M, Lian B, Jiang H, et al. Liver-targeted combination therapy basing on glycyrrhizic acid-modified DSPE-PEG-PEI nanoparticles for co-delivery of doxorubicin and Bcl-2 siRNA. Front Pharmacol. 2019;10:1–13.

    Article  CAS  Google Scholar 

  117. Kim J, Shim MK, Yang S, Moon Y, Song S, Choi J, et al. Combination of cancer-specific prodrug nanoparticle with Bcl-2 inhibitor to overcome acquired drug resistance. J Controll Release. 2020;330:920–32.

    Article  CAS  Google Scholar 

  118. Ning Q, Liu Y, Ye P, Gao P, Li Z, Tang S, et al. Delivery of liver-specific miRNA-122 using a targeted macromolecular prodrug toward synergistic therapy for hepatocellular carcinoma. ACS Appl Mater Interfaces. 2019;11:10578–88.

    Article  CAS  PubMed  Google Scholar 

  119. Liu M, Tu J, Feng Y, Zhang J, Wu J. Synergistic co-delivery of diacid metabolite of norcantharidin and ABT-737 based on folate-modified lipid bilayer-coated mesoporous silica nanoparticle against hepatic carcinoma. J Nanobiotechnology. 2020;18:114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Pu Chun Ke for critical reading of the manuscript. This work was supported by Fonds National de la Recherche Scientifique (FNRS)-MIS grant (33650793), FNRS-WELBIO grant (35112672), FNRS-CDR grant (35275350), European Research Council (ERC) Consolidator grant METAPTPs (GA817940), a JDRF Career Development Award (CDA-2019-758-A-N), National Science Foundation grant (CBET-1943302) and National Institutes of Health grant (R35GM133795). E.T. and E.N.G. are Research Associates of the FNRS, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban N. Gurzov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahma, M.K., Gilglioni, E.H., Zhou, L. et al. Oxidative stress in obesity-associated hepatocellular carcinoma: sources, signaling and therapeutic challenges. Oncogene 40, 5155–5167 (2021). https://doi.org/10.1038/s41388-021-01950-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01950-y

This article is cited by

Search

Quick links