Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancement of E-cadherin expression and processing and driving of cancer cell metastasis by ARID1A deficiency

Abstract

The ARID1A gene, which encodes a subunit of the SWI/SNF chromatin remodeling complex, has been found to be frequently mutated in many human cancer types. However, the function and mechanism of ARID1A in cancer metastasis are still unclear. Here, we show that knockdown of ARID1A increases the ability of breast cancer cells to proliferate, migrate, invade, and metastasize in vivo. The ARID1A-related SWI/SNF complex binds to the second exon of CDH1 and negatively modulates the expression of E-cadherin/CDH1 by recruiting the transcriptional repressor ZEB2 to the CDH1 promoter and excluding the presence of RNA polymerase II. The silencing of CDH1 attenuated the migration, invasion, and metastasis of breast cancer cells in which ARID1A was silenced. ARID1A depletion increased the intracellular enzymatic processing of E-cadherin and the production of C-terminal fragment 2 (CTF2) of E-cadherin, which stabilized β-catenin by competing for binding to the phosphorylation and degradation complex of β-catenin. The matrix metalloproteinase inhibitor GM6001 inhibited the production of CTF2. In zebrafish and nude mice, ARID1A silencing or CTF2 overexpression activated β-catenin signaling and promoted migration/invasion and metastasis of cancer cells in vivo. The inhibitors GM6001, BB94, and ICG-001 suppressed the migration and invasion of cancer cells with ARID1A-deficiency. Our findings provide novel insights into the mechanism of ARID1A metastasis and offer a scientific basis for targeted therapy of ARID1A-deficient cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Loss of ARID1A promotes tumor cell migration, invasion, and metastasis.
Fig. 2: ARID1A-associated SWI/SNF complex regulates CDH1 (E-cadherin) transcription in a negative fashion.
Fig. 3: Loss of ARID1A associates with increased intracellular digestion of E-cad.
Fig. 4: Loss of ARID1A and expression of E-cad/CTFs increases β–catenin and epithelial to mesenchymal transition (EMT) markers.
Fig. 5: E-cad/CTF2 stabilizes β−catenin by competitive binding with the phosphorylation and degradation complex of β−catenin.
Fig. 6: ARID1A-deficiency and upregulation of E-cad/CTF2 activate β–catenin downstream signaling.
Fig. 7: CTF2 promotes migration, invasion, and metastasis of BC cells with ARID1A-deficiency.

Similar content being viewed by others

References

  1. Wu JN, Roberts CWM. ARID1A mutations in cancer: another epigenetic tumor suppressor?. Cancer Discov. 2013;3:35–43.

    Article  CAS  PubMed  Google Scholar 

  2. Masliah-Planchon J, Bieche I, Guinebretiere JM, Bourdeaut F, Delattre O. SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol. 2015;10:145–71.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu M, Lu TS, Jia YM, Luo X, Gopal P, Li L, et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell. 2019;177:608-+.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun XX, Chuang JC, Kanchwala M, Wu LW, Celen C, Li L, et al. Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration. Cell Stem Cell. 2016;18:456–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsurusaki Y, Okamoto N, Ohashi H, Mizuno S, Matsumoto N, Makita Y, et al. Coffin-Siris syndrome is a SWI/SNF complex disorder. Clin Genet. 2014;85:548–54.

    Article  CAS  PubMed  Google Scholar 

  6. Jones S, Wang TL, Shih IM, Mao TL, Nakayama K, Roden R, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330:228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Getz G. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497:67.

  8. Liang H, Cheung LWT, Li J, Ju ZL, Yu SX, Stemke-Hale K, et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 2012;22:2120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chandler RL, Damrauer JS, Raab JR, Schisler JC, Wilkerson MD, Didion JP, et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015;6:6118.

    Article  PubMed  CAS  Google Scholar 

  10. Williamson CT, Miller R, Pemberton HN, Jones SE, Campbell J, Konde A, et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat Commun. 2016;7:13837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Shen JF, Peng Y, Wei LZ, Zhang W, Yang L, Lan L, et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov. 2015;5:752–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berns K, Sonnenblick A, Gennissen A, Brohee S, Hijmans EM, Evers B, et al. Loss of ARID1A activates ANXA1, which serves as a predictive biomarker for trastuzumab resistance. Clin Cancer Res. 2016;22:5238–48.

    Article  CAS  PubMed  Google Scholar 

  13. Hu CB, Li WP, Tian F, Jiang K, Liu XT, Cen J, et al. Arid1a regulates response to anti-angiogenic therapy in advanced hepatocellular carcinoma. J Hepatol. 2018;68:465–75.

    Article  CAS  PubMed  Google Scholar 

  14. Helming KC, Wang XF, Wilson BG, Vazquez F, Haswell JR, Manchester HE, et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat Med. 2014;20:251–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ng CKY, Piscuoglio S, Geyer FC, Burke KA, Pareja F, Eberle CA, et al. The landscape of somatic genetic alterations in metaplastic breast carcinomas. Clin Cancer Res. 2017;23:3859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liang X, Vacher S, Boulai A, Bernard V, Baulande S, Bohec M, et al. Targeted next-generation sequencing identifies clinically relevant somatic mutations in a large cohort of inflammatory breast cancer. Breast Cancer Res. 2018;20:88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Marchio C, Geyer FC, Ng CKY, Piscuoglio S, De Filippo MR, Cupo M, et al. The genetic landscape of breast carcinomas with neuroendocrine differentiation. J Pathol. 2017;241:405–19.

    Article  CAS  PubMed  Google Scholar 

  18. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486:400-+.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cho HD, Lee JE, Jung HY, Oh MH, Lee JH, Jang SH, et al. Loss of tumor suppressor ARID1A protein expression correlates with poor prognosis in patients with primary breast cancer. J Breast Cancer. 2015;18:339–46.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Uncel M, Diniz G, Akoz G, Ekin ZY, Sayhan S, Yardim S, et al. Loss of nuclear ARID-1A expressions is associated with hormone receptor status in breast cancers. Eur J Breast Health. 2019;15:125–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fearon ER. Connecting estrogen receptor function, transcriptional repression, and E-cadherin expression in breast cancer. Cancer Cell. 2003;3:307–10.

    Article  CAS  PubMed  Google Scholar 

  22. Yan HB, Wang XF, Zhang Q, Tang ZQ, Jiang YH, Fan HZ, et al. Reduced expression of the chromatin remodeling gene ARID1A enhances gastric cancer cell migration and invasion via downregulation of E-cadherin transcription. Carcinogenesis. 2014;35:867–76.

    Article  CAS  PubMed  Google Scholar 

  23. Svensson S, Abrahamsson A, Rodriguez GV, Olsson AK, Jensen L, Cao YH, et al. CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer. Clin Cancer Res. 2015;21:3794–805.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q, Yan HB, Wang J, Cui SJ, Wang XQ, Jiang YH, et al. Chromatin remodeling gene AT-rich interactive domain-containing protein 1A suppresses gastric cancer cell proliferation by targeting PIK3CA and PDK1. Oncotarget. 2016;7:46127–41.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guan B, Wang TL, Shih IM. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers (vol 71, pg 6718, 2011). Cancer Res. 2012;72:3116–3116.

    Article  CAS  Google Scholar 

  26. Xiao G, Yin Z, Anand M, Vikas M, Ding LW, Lin LH, et al. ARID1A and CEBPα cooperatively inhibit UCA1 transcription in breast cancer. Oncogene. 2018;37:5939–5951.

    Article  CAS  Google Scholar 

  27. Bitler BG, Wu S, Park PH, Hai Y, Aird KM, Wang YM, et al. ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol. 2017;19:962–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sanchez-Tillo E, Siles L, De Barrios O, Cuatrecasas M, Vaquero EC, Castells A, et al. Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res. 2011;1:897–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pinheiro H, Carvalho J, Oliveira P, Ferreira D, Pinto MT, Osorio H, et al. Transcription initiation arising from E-cadherin/CDH1 intron2: a novel protein isoform that increases gastric cancer cell invasion and angiogenesis(dagger). Hum Mol Genet. 2012;21:4253–69.

    Article  CAS  PubMed  Google Scholar 

  30. Marambaud P, Shioi J, Serban G, Georgakopoulos A, Sarner S, Nagy V, et al. A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J. 2002;21:1948–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ryniers F, Stove C, Goethals M, Brackenier L, Noe V, Bracke M, et al. Plasmin produces an E-cadherin fragment that stimulates cancer cell invasion. Biol Chem. 2002;383:159–65.

    Article  CAS  PubMed  Google Scholar 

  32. Noe V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci. 2001;114:111–8.

    Article  CAS  PubMed  Google Scholar 

  33. Cespedes MV, Larriba MJ, Pavon MA, Alamo P, Casanova I, Parreno M, et al. Site-dependent E-Cadherin cleavage and nuclear translocation in a metastatic colorectal cancer model. Am J Pathol. 2010;177:2067–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J. 2012;31:2714–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jou TS, Stewart DB, Stappert J, Nelson WJ, Marrs JA. Genetic and biochemical dissection of protein linkages in the cadherin-catenin complex. Proc Natl Acad Sci USA. 1995;92:5067–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim H, He Y, Yang I, Zeng Y, Kim Y, Seo YW, et al. delta-Catenin promotes E-cadherin processing and activates beta-catenin-mediated signaling: Implications on human prostate cancer progression. Biochim Biophys Acta. 2012;1822:509–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huber AH, Weis WI. The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell. 2001;105:391–402.

    Article  CAS  PubMed  Google Scholar 

  38. Stewart DJ. Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst 2014;106:djt356.

  39. Liu CM, Li YM, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108:837–47.

    Article  CAS  PubMed  Google Scholar 

  40. Sadot E, Simcha I, Shtutman M, Ben-Ze’ev A, Geiger B. Inhibition of beta-catenin-mediated transactivation by cadherin derivatives. Proc Natl Acad Sci USA. 1998;95:15339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Simcha I, Kirkpatrick C, Sadot E, Shtutman M, Polevoy G, Geiger B, et al. Cadherin sequences that inhibit beta-catenin signaling: a study in yeast and mammalian cells. Mol Biol Cell. 2001;12:1177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang K, Yuen ST, Xu JC, Lee SP, Yan HHN, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    Article  CAS  PubMed  Google Scholar 

  43. Li C, Xu ZL, Zhao Z, An Q, Wang L, Yu Y, et al. ARID1A gene knockdown promotes neuroblastoma migration and invasion. Neoplasma. 2017;64:367–76.

    Article  CAS  PubMed  Google Scholar 

  44. Xu GT, Chhangawala S, Cocco E, Razavi P, Cai YY, Otto JE. et al. ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet. 2020;52:198–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilson BG, Roberts CWM. SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer. 2011;11:481–92.

    Article  CAS  PubMed  Google Scholar 

  46. Gottardi CJ, Wong E, Gumbiner BM. E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol. 2001;153:1049–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Yi-Yuan Ren, Jia-Hui Li, and Xiao-Qiang Chai for their helps in experiments. The work was supported by the National Natural Science Foundation of China (NSFC) (81572833, 22074020), Chinese National Key Program on Basic Research Grant (2011CB910702, 2013CB911202), and the Natural Science Foundation of Shanghai (14ZR1402100).

Author information

Authors and Affiliations

Authors

Contributions

FL and PYY conceived the study. JW, HBY, QZ, XL, GP, FZW, and YHJ performed the experiments. WYL contributed to the clinical samples. FL wrote the manuscript. All authors reviewed and approved the manuscript for publication.

Corresponding authors

Correspondence to Peng-Yuan Yang or Feng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yan, HB., Zhang, Q. et al. Enhancement of E-cadherin expression and processing and driving of cancer cell metastasis by ARID1A deficiency. Oncogene 40, 5468–5481 (2021). https://doi.org/10.1038/s41388-021-01930-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01930-2

This article is cited by

Search

Quick links