Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting the HIF-1α-IGFBP2 axis therapeutically reduces IGF1-AKT signaling and blocks the growth and metastasis of relapsed anaplastic Wilms tumor

A Correction to this article was published on 19 January 2022

This article has been updated

Abstract

For patients with anaplastic Wilms tumor (WiT), metastasis and recurrence are common, and prognosis is generally poor. Novel therapies are needed to improve outcomes for patients with this high-risk WiT. A potential contributor to WiT development is constitutive activation of AKT by insulin-like growth factor 1 (IGF1) and its receptor (IGF1R) signaling pathway, but the complete underlying mechanism remains unclear. Here, we demonstrate that the hypoxia-inducible factor 1α (HIF-1α)-IGF binding protein 2 (IGFBP2) axis and the tumor-specific IGF1A are key players for constitutive activation of IGF1-AKT signaling leading to the tumor malignancy. HIF-1α and IGFBP2 are highly expressed in a majority of WiT patient samples. Deficiency of either HIF-1α or IGFBP2 or IGF1 in the tumor cells significantly impairs tumor growth and nearly abrogates metastasis in xenografted mice. Pharmacologic targeting of HIF-1α by echinomycin delivered via nanoliposomes can efficiently restrain growth and metastasis of patient-derived relapsed anaplastic WiT xenografts. Liposomal echinomycin is more potent and effective in inhibiting WiT growth than vincristine in an anaplastic WiT mouse model, and eliminates metastasis by suppressing HIF-1α targets and the HIF-1α-IGFBP2 axis, which governs IGF1-AKT signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HIF-1α is highly accumulated and activated in pediatric WiT.
Fig. 2: HIF-1α expression is critical for WiT growth.
Fig. 3: Lipo-EM inhibits growth and metastasis of WiT more efficiently than vincristine.
Fig. 4: IGFBP2 is a downstream target gene controlled by HIF-1α.
Fig. 5: HIF-1α and IGFBP2 are critical for WiT growth and metastasis.
Fig. 6: IGF1 drives the growth and metastasis of WiT49 cells in vivo.
Fig. 7: HIF-1α-IGFBP2 axis enhances IGF1-IGF1R-AKT signaling for HIF-1α accumulation and feedforward regulation which are targetable by echinomycin in WiT.

Similar content being viewed by others

Change history

References

  1. Dome JS, Liu T, Krasin M, Lott L, Shearer P, Daw NC, et al. Improved survival for patients with recurrent Wilms tumor: the experience at St. Jude Children’s Research Hospital. J Pediatr Hematol Oncol. 2002;24:192–8.

    Article  PubMed  Google Scholar 

  2. Dome JS, Graf N, Geller JI, Fernandez CV, Mullen EA, Spreafico F, et al. Advances in Wilms tumor treatment and biology: progress through international collaboration. J Clin Oncol. 2015;33:2999–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mavinkurve-Groothuis AM, van den Heuvel-Eibrink MM, Tytgat GA, van Tinteren H, Vujanic G, Pritchard-Jones KL, et al. Treatment of relapsed Wilms tumour (WT) patients: experience with topotecan. A report from the SIOP Renal Tumour Study Group (RTSG). Pediatr Blood Cancer. 2015;62:598–602.

    Article  CAS  PubMed  Google Scholar 

  4. Sasso G, Greco N, Murino P, Sasso FS. Late toxicity in Wilms tumor patients treated with radiotherapy at 15 years of median follow-up. J Pediatr Hematol Oncol. 2010;32:e264–7.

    Article  PubMed  Google Scholar 

  5. Reeve AE, Eccles MR, Wilkins RJ, Bell GI, Millow LJ. Expression of insulin-like growth factor-II transcripts in Wilms’ tumour. Nature. 1985;317:258–60.

    Article  CAS  PubMed  Google Scholar 

  6. Haselbacher GK, Irminger JC, Zapf J, Ziegler WH, Humbel RE. Insulin-like growth factor II in human adrenal pheochromocytomas and Wilms tumors: expression at the mRNA and protein level. Proc Natl Acad Sci USA. 1987;84:1104–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scott J, Cowell J, Robertson ME, Priestley LM, Wadey R, Hopkins B, et al. Insulin-like growth factor-II gene expression in Wilms’ tumour and embryonic tissues. Nature. 1985;317:260–2.

    Article  CAS  PubMed  Google Scholar 

  8. Bielen A, Box G, Perryman L, Bjerke L, Popov S, Jamin Y, et al. Dependence of Wilms tumor cells on signaling through insulin-like growth factor 1 in an orthotopic xenograft model targetable by specific receptor inhibition. Proc Natl Acad Sci USA. 2012;109:E1267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brahmkhatri VP, Prasanna C, Atreya HS. Insulin-like growth factor system in cancer: novel targeted therapies. BioMed Res Int. 2015;2015:538019.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Miyamoto S, Nakamura M, Yano K, Ishii G, Hasebe T, Endoh Y, et al. Matrix metalloproteinase-7 triggers the matricrine action of insulin-like growth factor-II via proteinase activity on insulin-like growth factor binding protein 2 in the extracellular matrix. Cancer Sci. 2007;98:685–91.

    Article  CAS  PubMed  Google Scholar 

  11. Shen X, Xi G, Maile LA, Wai C, Rosen CJ, Clemmons DR. Insulin-like growth factor (IGF) binding protein 2 functions coordinately with receptor protein tyrosine phosphatase beta and the IGF-I receptor to regulate IGF-I-stimulated signaling. Mol Cell Biol. 2012;32:4116–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yau SW, Azar WJ, Sabin MA, Werther GA, Russo VC. IGFBP-2 - taking the lead in growth, metabolism and cancer. J Cell Commun Signal. 2015;9:125–42.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Germain-Lee EL, Janicot M, Lammers R, Ullrich A, Casella SJ. Expression of a type I insulin-like growth factor receptor with low affinity for insulin-like growth factor II. Biochem J. 1992;281:413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roghani M, Lassarre C, Zapf J, Povoa G, Binoux M. Two insulin-like growth factor (IGF)-binding proteins are responsible for the selective affinity for IGF-II of cerebrospinal fluid binding proteins. J Clin Endocrinol Metab. 1991;73:658–66.

    Article  CAS  PubMed  Google Scholar 

  15. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993;75:73–82.

    Article  CAS  PubMed  Google Scholar 

  16. Wamaitha SE, Grybel KJ, Alanis-Lobato G, Gerri C, Ogushi S, McCarthy A, et al. IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nat Commun. 2020;11:764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sciarra A. et al. Words of wisdom. Re: Retrospective analysis of prostate cancer recurrence potential with tissue metabolomic profiles. Maxeiner A, Adkins CB, Zhang Y, et al. Prostate 2010;70:710-7. Eur Urol. 2010;58:315

    Article  PubMed  Google Scholar 

  18. Shiratsuchi I, Akagi Y, Kawahara A, Kinugasa T, Romeo K, Yoshida T, et al. Expression of IGF-1 and IGF-1R and their relation to clinicopathological factors in colorectal cancer. Anticancer Res. 2011;31:2541–5.

    CAS  PubMed  Google Scholar 

  19. Huang YF, Shen MR, Hsu KF, Cheng YM, Chou CY. Clinical implications of insulin-like growth factor 1 system in early-stage cervical cancer. Br J Cancer. 2008;99:1096–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. King ER, Zu Z, Tsang YT, Deavers MT, Malpica A, Mok SC, et al. The insulin-like growth factor 1 pathway is a potential therapeutic target for low-grade serous ovarian carcinoma. Gynecol Oncol. 2011;123:13–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rigiracciolo DC, Nohata N, Lappano R, Cirillo F, Talia M, Scordamaglia D, et al. IGF-1/IGF-1R/FAK/YAP transduction signaling prompts growth effects in triple-negative breast cancer (TNBC) Cells. Cells. 2020;9:1010

    Article  CAS  PubMed Central  Google Scholar 

  22. Ambrosini-Spaltro A, Farnedi A, Montironi R, Foschini MP. IGFBP2 as an immunohistochemical marker for prostatic adenocarcinoma. Appl Immunohistochem Mol Morphol. 2011;19:318–28.

    Article  CAS  PubMed  Google Scholar 

  23. Liou JM, Shun CT, Liang JT, Chiu HM, Chen MJ, Chen CC, et al. Plasma insulin-like growth factor-binding protein-2 levels as diagnostic and prognostic biomarker of colorectal cancer. J Clin Endocrinol Metab. 2010;95:1717–25.

    Article  CAS  PubMed  Google Scholar 

  24. Kim YW, Bae SM, Kim YW, Park DC, Lee KH, Liu HB, et al. Target-based molecular signature characteristics of cervical adenocarcinoma and squamous cell carcinoma. Int J Oncol. 2013;43:539–47.

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Rosen DG, Wang H, Fuller GN, Zhang W, Liu J. Insulin-like growth factor-binding protein 2 and 5 are differentially regulated in ovarian cancer of different histologic types. Mod Pathol. 2006;19:1149–56.

    Article  CAS  PubMed  Google Scholar 

  26. Dean SJ, Perks CM, Holly JM, Bhoo-Pathy N, Looi LM, Mohammed NA, et al. Loss of PTEN expression is associated with IGFBP2 expression, younger age, and late stage in triple-negative breast cancer. Am J Clin Pathol. 2014;141:323–33.

    Article  PubMed  Google Scholar 

  27. Vincent TS, Garvin AJ, Gramling TS, Hazen-Martin DJ, Re GG, Sens DA. Expression of insulin-like growth factor binding protein 2 (IGFBP-2) in Wilms’ tumors. Pediatr Pathol. 1994;14:723–30.

    Article  CAS  PubMed  Google Scholar 

  28. Lu J, Tao YF, Li ZH, Cao L, Hu SY, Wang NN, et al. Analyzing the gene expression profile of anaplastic histology Wilms’ tumor with real-time polymerase chain reaction arrays. Cancer Cell Int. 2015;15:44.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zumkeller W, Schwander J, Mitchell CD, Morrell DJ, Schofield PN, Preece MA. Insulin-like growth factor (IGF)-I, -II and IGF binding protein-2 (IGFBP-2) in the plasma of children with Wilms’ tumour. Eur J Cancer. 1993;29A:1973–7.

    Article  CAS  PubMed  Google Scholar 

  30. Semenza GL. Oxygen sensing, homeostasis, and disease. N Engl J Med. 2011;365:537–47.

    Article  CAS  PubMed  Google Scholar 

  31. Wigerup C, Pahlman S, Bexell D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol Ther. 2016;164:152–69.

    Article  CAS  PubMed  Google Scholar 

  32. Qiang L, Wu T, Zhang HW, Lu N, Hu R, Wang YJ, et al. HIF-1alpha is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ. 2012;19:284–94.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell. 2011;8:399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Newman B, Liu Y, Lee HF, Sun D, Wang Y. HSP90 inhibitor 17-AAG selectively eradicates lymphoma stem cells. Cancer Res. 2012;72:4551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bailey CM, Liu Y, Peng G, Zhang H, He M, Sun D, et al. Liposomal formulation of HIF-1alpha inhibitor echinomycin eliminates established metastases of triple-negative breast cancer. Nanomedicine. 2020;29:102278.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Liu Y, Bailey C, Zhang H, He M, Sun D, et al. Therapeutic targeting of TP53-mutated acute myeloid leukemia by inhibiting HIF-1alpha with echinomycin. Oncogene. 2020;39:3015–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karth J, Ferrer FA, Perlman E, Hanrahan C, Simons JW, Gearhart JP, et al. Coexpression of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor in Wilms’ tumor. J Pediatr Surg. 2000;35:1749–53.

    Article  CAS  PubMed  Google Scholar 

  38. Dungwa JV, Hunt LP, Ramani P. Overexpression of carbonic anhydrase and HIF-1alpha in Wilms tumours. BMC Cancer. 2011;11:390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu Q, Gao F, Tian W, Ruteshouser EC, Wang Y, Lazar A, et al. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J Clin Investig. 2011;121:174–83.

    Article  CAS  PubMed  Google Scholar 

  40. Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 1999;59:3915–8.

    CAS  PubMed  Google Scholar 

  41. Durzynska J, Philippou A, Brisson BK, Nguyen-McCarty M, Barton ER. The pro-forms of insulin-like growth factor I (IGF-I) are predominant in skeletal muscle and alter IGF-I receptor activation. Endocrinology. 2013;154:1215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barton ER, DeMeo J, Lei H. The insulin-like growth factor (IGF)-I E-peptides are required for isoform-specific gene expression and muscle hypertrophy after local IGF-I production. J Appl Physiol (1985). 2010;108:1069–76.

    Article  CAS  PubMed Central  Google Scholar 

  43. Chen X, Zheng J, Zou Y, Song C, Hu X, Zhang CC. IGF binding protein 2 is a cell-autonomous factor supporting survival and migration of acute leukemia cells. J Hematol Oncol. 2013;6:72.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Perks CM, Vernon EG, Rosendahl AH, Tonge D, Holly JM. IGF-II and IGFBP-2 differentially regulate PTEN in human breast cancer cells. Oncogene. 2007;26:5966–72.

    Article  CAS  PubMed  Google Scholar 

  45. Foulstone EJ, Zeng L, Perks CM, Holly JM. Insulin-like growth factor binding protein 2 (IGFBP-2) promotes growth and survival of breast epithelial cells: novel regulation of the estrogen receptor. Endocrinology. 2013;154:1780–93.

    Article  CAS  PubMed  Google Scholar 

  46. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000;14:391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Emerling BM, Weinberg F, Liu JL, Mak TW, Chandel NS. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proc Natl Acad Sci USA. 2008;105:2622–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mireuta M, Darnel A, Pollak M. IGFBP-2 expression in MCF-7 cells is regulated by the PI3K/AKT/mTOR pathway through Sp1-induced increase in transcription. Growth Factors. 2010;28:243–55.

    Article  CAS  PubMed  Google Scholar 

  49. Chekhonin VP, Shein SA, Korchagina AA, Gurina OI. VEGF in tumor progression and targeted therapy. Curr Cancer Drug Targets. 2013;13:423–43.

    Article  CAS  PubMed  Google Scholar 

  50. Simpson A, Petnga W, Macaulay VM, Weyer-Czernilofsky U, Bogenrieder T. Insulin-like growth factor (IGF) pathway targeting in cancer: role of the IGF axis and opportunities for future combination studies. Target Oncol. 2017;12:571–97.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol. 2020;13:64.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schilsky RL, Faraggi D, Korzun A, Vogelzang N, Ellerton J, Wood W, et al. Phase II study of echinomycin in patients with advanced breast cancer: a report of Cancer and Leukemia Group B protocol 8641. Invest. New Drugs. 1991;9:269–72.

    Article  CAS  PubMed  Google Scholar 

  53. Wegert J, Vokuhl C, Ziegler B, Ernestus K, Leuschner I, Furtwangler R, et al. TP53 alterations in Wilms tumour represent progression events with strong intratumour heterogeneity that are closely linked but not limited to anaplasia. J Pathol Clin Res. 2017;3:234–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Geller JI. Current standards of care and future directions for “high-risk” pediatric renal tumors: anaplastic Wilms tumor and Rhabdoid tumor. Urol Oncol. 2016;34:50–6.

    Article  PubMed  Google Scholar 

  55. Alami J, Williams BR, Yeger H. Derivation and characterization of a Wilms’ tumour cell line, WiT 49. Int J Cancer. 2003;107:365–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants from the National Institutes of Health National Cancer Institute CA171972, CA183030 (Y.L.), and CA219150, CA227671 (Y.W.).

Author information

Authors and Affiliations

Authors

Contributions

Y. Liu: Conceptualization, data curation, formal analysis, supervision, investigation, methodology, writing original manuscript, and writing-review and editing. M.V. Nelson: Clinical sample collection, investigation, data curation, writing-original draft, and review and editing. C. Bailey: Investigation, data curation, methodology and review and editing. P. Zhang: bioinformatics analyses. J.S. Dome, P. Zheng: Formal analysis, supervision, writing-review and editing. Y. Liu, Y. Wang: Conceptualization, formal analysis, supervision, funding acquisition, project administration, writing-review and editing.

Corresponding authors

Correspondence to Yan Liu, Yang Liu or Yin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Nelson, M.V., Bailey, C. et al. Targeting the HIF-1α-IGFBP2 axis therapeutically reduces IGF1-AKT signaling and blocks the growth and metastasis of relapsed anaplastic Wilms tumor. Oncogene 40, 4809–4819 (2021). https://doi.org/10.1038/s41388-021-01907-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01907-1

This article is cited by

Search

Quick links