Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CDCA2 protects against oxidative stress by promoting BRCA1–NRF2 signaling in hepatocellular carcinoma

Abstract

Hepatocellular carcinoma (HCC) patients mostly suffer from poor survival outcomes. It is necessary to identify effective therapeutic targets to improve prognosis for HCC patients. Here, we report a new factor, CDCA2, in promoting HCC development. CDCA2 amplification is an independent risk factor for the recurrence and survival of HCC patients, which is positively correlated with elevated level of alpha-fetoprotein (AFP), high histological grade, large tumor size, advanced TNM stage, and poor prognosis for HCC patients. In HCC cells, CDCA2 promotes cell growth and inhibits apoptosis. Mechanistically, CDCA2’s transcription is activated through the binding of E2F2/E2F8 with its promoter. CDCA2 depletion contributes to the suppression of cell proliferation and induction of apoptosis due to reactive oxygen species (ROS)-mediated stress, which can be reversed by antioxidants N-acetyl cysteine (NAC) and glutathione (GSH). Interestingly, we found that CDCA2 triggers the BRCA1–NRF2 cascade, which elevates antioxidant response and attenuates ROS levels. In response to oxidative stress, CDCA2 promotes BRCA1’s chromatin relocalization to NRF2, activating NRF2-driven downstream signaling (HO-1, TXNRD1, and NQO1), which then protects HCC cells against oxidative damage. In conclusion, our results reveal that CDCA2 is a prognostic biomarker for HCC patients, and present the E2F2/E2F8–CDCA2–BRCA1–NRF2–ROS signaling axis that have implications for HCC therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CDCA2 is overexpressed in HCC, which is positively associated with a poor prognosis of HCC patients.
Fig. 2: CDCA2 promotes HCC cell proliferation and inhibits HCC cell apoptosis.
Fig. 3: CDCA2 is a critical effector for E2F2/E2F8 transcription factors in regulation of HCC cell proliferation and apoptosis.
Fig. 4: CDCA2 transcription is co-activated by E2F2 and E2F8 binding to CDCA2 promoter.
Fig. 5: CDCA2 upregulated by E2F2/E2F8 promotes HCC cell malignant phenotypes via reducing ROS accumulation.
Fig. 6: ROS levels suppressed by the E2F2/E2F8–CDCA2 signaling axis are associated with worse outcomes of HCC patients.
Fig. 7: CDCA2 promotes BRCA1–NRF2 complex against oxidative stress in HCC cells.
Fig. 8: The proposed model for CDCA2 in the ROS pathway.

Similar content being viewed by others

Data availability

All data are available from authors upon reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14.

    Article  Google Scholar 

  3. Chen C, Chen S, Luo M, Yan H, Pang L, Zhu C, et al. The role of the CDCA gene family in ovarian cancer. Ann Transl Med. 2020;8:190–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shen Z, Yu X, Zheng Y, Lai X, Li J, Hong Y, et al. CDCA5 regulates proliferation in hepatocellular carcinoma and has potential as a negative prognostic marker. Onco Targets Ther. 2018;11:891–901.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thang PM, Takano A, Yoshitake Y, Shinohara M, Murakami Y, Daigo Y. Cell division cycle associated 1 as a novel prognostic biomarker and therapeutic target for oral cancer. Int J Oncol. 2016;49:1385–93.

    Article  CAS  PubMed  Google Scholar 

  6. Uchida F, Uzawa K, Kasamatsu A, Takatori H, Sakamoto Y, Ogawara K, et al. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest. BMC Cancer. 2012;12:321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu B, Huang Y, Luo Y, Ma A, Wu Z, Gan Y, et al. The diagnostic and prognostic value of cell division cycle associated gene family in hepatocellular varcinoma. J Cancer. 2020;11:5727–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu Y, Wu X, Li F, Huang D, Zhu W. CDCA4, a downstream gene of the Nrf2 signaling pathway, regulates cell proliferation and apoptosis in the MCF7/ADM human breast cancer cell line. Mol Med Rep. 2018;17:1507–12.

    CAS  PubMed  Google Scholar 

  9. Vagnarelli P. Repo-man at the intersection of chromatin remodelling, DNA repair, nuclear envelope organization, and cancer progression. Adv Exp Med Biol. 2014;773:401–14.

    Article  CAS  PubMed  Google Scholar 

  10. Shi R, Zhang C, Wu Y, Wang X, Sun Q, Sun J, et al. CDCA2 promotes lung adenocarcinoma cell proliferation and predicts poor survival in lung adenocarcinoma patients. Oncotarget. 2017;8:19768–79.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Cheng Y, Zhang Z, Bai Z, Jin H, Guo X, et al. CDCA2 inhibits apoptosis and promotes cell proliferation in prostate cancer and is directly regulated by HIF-1alpha pathway. Front Oncol. 2020;10:725–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  Google Scholar 

  13. Kim H, Kim YN, Kim H, Kim CW. Oxidative stress attenuates Fas-mediated apoptosis in Jurkat T cell line through Bfl-1 induction. Oncogene. 2005;24:1252–61.

    Article  CAS  PubMed  Google Scholar 

  14. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51:794–8.

    CAS  PubMed  Google Scholar 

  15. Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell. 2002;9:1031–44.

    Article  CAS  PubMed  Google Scholar 

  16. Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48:158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Metallo CM, Vander, Heiden MG. Understanding metabolic regulation and its influence on cell physiology. Mol Cell. 2013;49:388–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu IM, Lai RK, Lin SH, Tse AP, Chiu DK, Koh HY, et al. Transketolase counteracts oxidative stress to drive cancer development. Proc Natl Acad Sci USA. 2016;113:E725–34.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gorrini C, Baniasadi PS, Harris IS, Silvester J, Inoue S, Snow B, et al. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival. J Exp Med. 2013;210:1529–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xanthoulis A, Tiniakos DG. E2F transcription factors and digestive system malignancies: how much do we know? World J Gastroenterol. 2013;19:3189–98.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang JZ, Chen M, Zeng M, Xu SH, Zou FY, Chen D, et al. Down-regulation of TRPS1 stimulates epithelial-mesenchymal transition and metastasis through repression of FOXA1. J Pathol. 2016;239:186–96.

    Article  CAS  PubMed  Google Scholar 

  22. Huang G, Jiang H, He Y, Lin Y, Xia W, Luo Y, et al. LncMAPK6 drives MAPK6 expression and liver TIC self-renewal. J Exp Clin Cancer Res. 2018;37:105–16.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen X, Zhong Z, Xu Z, Chen L, Wang Y. 2’,7’-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res. 2010;44:587–604.

    Article  CAS  PubMed  Google Scholar 

  24. Hill SJ, Rolland T, Adelmant G, Xia X, Owen MS, Dricot A, et al. Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes Dev. 2014;28:1957–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bae I, Fan S, Meng Q, Rih JK, Kim HJ, Kang HJ, et al. BRCA1 induces antioxidant gene expression and resistance to oxidative stress. Cancer Res. 2004;64:7893–909.

    Article  CAS  PubMed  Google Scholar 

  26. Saha T, Rih JK, Rosen EM. BRCA1 down-regulates cellular levels of reactive oxygen species. FEBS Lett. 2009;583:1535–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Teng Y, Yadav T, Duan M, Tan J, Xiang Y, Gao B, et al. ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB. Nat Commun. 2018;9:4115–27.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cao L, Xu X, Cao LL, Wang RH, Coumoul X, Kim SS, et al. Absence of full-length Brca1 sensitizes mice to oxidative stress and carcinogen-induced tumorigenesis in the esophagus and forestomach. Carcinogenesis. 2007;28:1401–7.

    Article  CAS  PubMed  Google Scholar 

  29. Chen W, Sun Z, Wang XJ, Jiang T, Huang Z, Fang D, et al. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol Cell. 2009;34:663–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gorbunova V, Rezazadeh S, Seluanov A. Dangerous entrapment for NRF2. Cell 2016;165:1312–3.

    Article  CAS  PubMed  Google Scholar 

  31. Rezazadeh S, Yang D, Tombline G, Simon M, Regan SP, Seluanov A, et al. SIRT6 promotes transcription of a subset of NRF2 targets by mono-ADP-ribosylating BAF170. Nucleic Acids Res. 2019;47:7914–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sugawara S, Yamada Y, Arai T, Okato A, Idichi T, Kato M, et al. Dual strands of the miR-223 duplex (miR-223-5p and miR-223-3p) inhibit cancer cell aggressiveness: targeted genes are involved in bladder cancer pathogenesis. J Hum Genet. 2018;63:657–68.

    Article  CAS  PubMed  Google Scholar 

  33. Baiz D, Dapas B, Farra R, Scaggiante B, Pozzato G, Zanconati F, et al. Bortezomib effect on E2F and cyclin family members in human hepatocellular carcinoma cell lines. World J Gastroenterol. 2014;20:795–803.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhan L, Huang C, Meng XM, Song Y, Wu XQ, Miu CG, et al. Promising roles of mammalian E2Fs in hepatocellular carcinoma. Cell Signal. 2014;26:1075–81.

    Article  CAS  PubMed  Google Scholar 

  35. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.

    Article  CAS  PubMed  Google Scholar 

  36. Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 2016;7:e2253–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang H, Liu X, Long M, Huang Y, Zhang L, Zhang R, et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci Transl Med. 2016;8:334–51.

    Google Scholar 

  38. Jeong Y, Hoang NT, Lovejoy A, Stehr H, Newman AM, Gentles AJ, et al. Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance. Cancer Discov. 2017;7:86–101.

    Article  CAS  PubMed  Google Scholar 

  39. Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 2019;178:330–45.

    Article  CAS  PubMed  Google Scholar 

  40. Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK, Karlsson C, et al. Antioxidants can increase melanoma metastasis in mice. Sci Transl Med. 2015;7:308

    Google Scholar 

  41. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 2016;63:173–84.

    Article  CAS  PubMed  Google Scholar 

  42. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011;475:106–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shibata T, Ohta T, Tong KI, Kokubu A, Odogawa R, Tsuta K, et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci USA. 2008;105:13568–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen D, Wang Y, Lu R, Jiang X, Chen X, Meng N. et al. E3 ligase ZFP91 inhibits hepatocellular carcinoma metabolism reprogramming by regulating PKM splicing. Theranostics. 2020;10:8558–72.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huang JZ, Chen M, Chen, Gao XC, Zhu S, Huang H, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell. 2017;68:171–84.

    Article  CAS  Google Scholar 

  46. El-Daher MT, Cagnard N, Gil M, Da Cruz MC, Leveau C, Sepulveda F, et al. Tetratricopeptide repeat domain 7A is a nuclear factor that modulates transcription and chromatin structure. Cell Discov. 2018;4:61–81.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:556–60.

    Article  Google Scholar 

  48. Zou Y, Lu Q, Yao Q, Dong D, Chen B. Identification of novel prognostic biomarkers in renal cell carcinoma. Aging (Albany NY). 2020;12:25304–18.

    Article  CAS  Google Scholar 

  49. Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics. 2007;23:3251–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81672393), Science and technology project of Guangzhou (No. 201707010379), Natural Science Youth Project of the Third Affiliated Hospital of Guangzhou Medical University (No. 2019Q07, 2019B06), the National Natural Science Foundation of China (82002104, to KC), Guangdong Basic and Applied Basic Research Foundation (2019A1515110659, to KC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De Chen or Yanjie Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Cao, K., Liao, Y. et al. CDCA2 protects against oxidative stress by promoting BRCA1–NRF2 signaling in hepatocellular carcinoma. Oncogene 40, 4368–4383 (2021). https://doi.org/10.1038/s41388-021-01855-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01855-w

This article is cited by

Search

Quick links